
Adaptive Optimisation Algorithms for

Gradient Descent

Zella Baig
Machine Learning MT22

Introduction

1 Introduction

Gradient Descent (GD) is an optimisation algorithm commonly used in machine learning

in order to find a minimum of a function F(x⃗), such as in least squares regression. At its

most basic, GD may be represented via the iterative scheme

x⃗ t+1 = x⃗ t −ηg⃗ t , (1)

where g⃗ t represents the gradient ∇F(x⃗ t), and η represents a hyperparameter known

as the learning rate, i.e. the “stepsizes”1 between successive x⃗ t . Due to the potentially

large computational time in calculating the gradient for the entire vector x⃗ in large

dimensions, we often use Stochastic Gradient Descent (SGD) where g⃗ t is replaced by a

randomly selected vector G⃗ t such that E
�

G⃗ t

�

=∇F (x⃗ t). In practice G⃗ is chosen to be

the gradient of a randomly selected element fi of F =
∑

i fi as this is the simplest choice.

In this report we use g⃗ to refer to both the actual and stochastic gradients, specifying

the context when appropriate.

As choosing the appropriate value for the learning rate η can be tricky due to

overshooting the minima or converging too slowly [15], there have been a host of

adaptive algorithms designed in recent years which attempt to overcome this issue. We

look at two methods in particular: AdaGrad-Norm [19], and AdaLoss [23]. We show that

these methods are robust to choice of initial hyperparameters under certain assumptions,

and further implement these and a third method AMSGrad [13] in both synthetic data as

well as on the California Housing Dataset [17] to demonstrate convergence as a function

of initial parameterisation, particularly versus SGD.

2 Overview of Methods

We define the schemes we analyse as

AdaGrad-Norm: x⃗ t+1 = x⃗ t −
η

bt+1
g⃗ t , b2

t+1 = b2
t +

g⃗ t

2
, (2)

AdaLoss: x⃗ t+1 = x⃗ t −
η

bt+1
g⃗ t , b2

t+1 = b2
t +α| fi (x⃗ t)− c|. (3)

where ∥·∥ is the ℓ2 norm, η, b0 > 0 are set at runtime, t = 0, · · · , N −1, α is some scaling

parameter for the stepsize2, and c is a constant corresponding to the minimum of fi.

1We use the terms stepsize and learning rate interchangeably to represent the prefactor for g⃗ t in

gradient descent-based methods.
2From now on set the scaling parameter α= 1 in order to better compare AdaLoss to AdaGrad-Norm;

the original paper introduces it as a parameter but this is not done in the paper introducing AdaGrad-Norm

Page 1

2.1 AdaGrad

Also note that η, the initial stepsize, is a constant unless we specify otherwise.

2.1 AdaGrad

AdaGrad-Norm and AdaLoss are both Adaptive Gradient Methods [23], a class of methods

introduced via AdaGrad [5] as an extension to the standard (S)GD methods in use at

the time. We briefly discuss AdaGrad and use this discussion to motivate our exploration

of both AdaGrad-Norm and AdaLoss. There is some ambiguity in how one can define

AdaGrad, but the method we refer to is the “coordinate” AdaGrad (named this way as

the stepsize is updated on a per-element basis for elements in w⃗),

x⃗ t+1 = x⃗ t −
η

b⃗t+1

g⃗ t , [b⃗i]
2
t+1 = [b⃗i]

2
t + [g⃗ i]

2. (4)

In (4), note that the scaling vector b⃗ that we build up is updated coordinate by coordinate,

as opposed to the constant factor that we see in AdaLoss or AdaGrad-Norm. Also note

that we employ an abuse of notation where the factor of 1/b⃗t+1 refers to element-wise

multiplication by the reciprocal of [b⃗i]t+1.

The intuition behind AdaGrad is similar to other adaptive stepsize methods wherein

we desire greater resolution when the function F changes more rapidly; when F has a

larger gradient we see that that the factor [b⃗i]t+1 increases faster. As each element of

g⃗ t is scaled by η/[b⃗i]t+1 we observe a smaller effective stepsize on indices where the

gradient is large.

We now tackle the issue of convergence. For non-convex functions, a set of sufficient

conditions for the convergence of stepsizes {ηt := η

bt+1
}Tt=1 is that

∞
∑

t=1

ηt = +∞ and
∞
∑

t=1

η2
t < +∞ (5)

as shown in [14]. The stepsizes in (4) do not necessarily satisfy this condition as we

may have g⃗ decreasing rapidly enough that the second sum in (5) diverges to +∞ [9],

so we work instead on bounding the gradients.

We first introduce several assumptions:

A1 We guarantee that F (x⃗) is bounded from below by some F ∗ (x⃗) > −∞ for all

x⃗ ∈ Rd , with d being the dimension we work in.

A2 The gradient is L-Lipschitz continuous: ∀ x⃗ , y⃗ ∈ Rd , ∥∇F (x⃗)−∇F (y⃗)∥ ≤
L∥x⃗ − y⃗∥ for some constant L.

when it could have been so we neglect its effect in this analysis.

Page 2

2.2 AdaGrad-Norm

A3 The gradients are bounded by a value γ: ∥∇F (x⃗)∥2∞ ≤ γ
2 for some γ, ∀x⃗ ∈ Rd .

Using these assumptions, as done in [4] we can then show that for non-convex

yet smooth functions the scheme considered in (4) has convergence (for the norm of

the gradient) of O
�

ln(N)/
p

N
�

, though we can tighten these bounds if we modify the

scheme in (4) to have terms which incorporate weighted averages of previous stepsizes.

We use these results to motivate convergence analysis of AdaGrad-Norm and AdaLoss

for smooth, convex functions instead, specifically in the case of linear regression.

2.2 AdaGrad-Norm

We now move to discuss the stochastic form of AdaGrad-Norm which is very similar to

(4) as discussed earlier. Along with assumption A2, for k ≥ 0 we also assume that we

have random vectors ξ⃗0, . . . , ξ⃗N−1 which are linearly independent and that

E
�

g⃗ (x⃗ , ξ⃗k)−∇F (x⃗)

2�

≤ σ2. (6)

In (6) we have made explicit the dependence of the stochastic gradient on the random

vectors ξ⃗k; in reality (6) is just stating the idea that the norm of the difference of the

stochastic gradient and the gradient itself is bounded by some variance σ2. We also use

a modified A3 to instead refer to the ℓ2 norm of the gradient being bounded instead of

the∞ norm.

2.2.1 Least Squares Regression with AdaGrad-Norm

In order to build up to our implementation of the algorithm with real data, let us discuss

AdaGrad-Norm in the context of Least Squares Regression. Consider the problem of

linear regression expressed as:

F (w⃗) =
1

2m

m
∑

i=1

�

X⃗
⊤
i w⃗ − yi

�2
=

1
2m

m
∑

i=1

fi (w⃗) , (7)

where we write F as a function of w⃗ in order to show that the problem is to find optimal

weights w⃗ such that we minimise F given some inputs X⃗ and outputs y⃗ . Here we have

X⃗ ∈ Rm×d , y⃗ ∈ Rm, and w⃗ ∈ Rd . Note that X⃗ i represents row i in the matrix X⃗ , and X⃗
⊤

the transpose of X⃗ . We define

λ̄m >0,

λ̄1 >0,

Page 3

2.2 AdaGrad-Norm

as the smallest and largest singular values of the matrix X⃗
⊤

X⃗ respectively, scaled3 by the

factor of 1/m. We pause to link these to the smoothness of F (w⃗) = 1
2m

X⃗ w⃗ − y⃗

2
and

so

∥∇F (w⃗)−∇F (v⃗)∥=
1
m

X⃗
⊤ �

X⃗ w⃗ − y⃗
�

− X⃗
⊤ �

X⃗ v⃗ − y⃗
�

=
1
m

X⃗
⊤

X⃗ (w⃗ − v⃗)

≤
1
m

X⃗
⊤

X⃗

∥w⃗ − v⃗∥

≤ λ̄1∥w⃗ − v⃗∥. (8)

Here we have used the fact that the norm of a matrix is the largest singular value of the

matrix. Thus, the smoothness of F (and thus all fi) is bounded by λ̄1. We also introduce

w⃗ ∗ which leads to the “optimal” (or minimal) value of F (w⃗); in our problem we thus

have X⃗ w⃗ ∗ = y⃗ leading to F (w⃗ ∗) = 0. Note that this immediately implies that c = 0 in

(3), and hence any further discussion of AdaLoss.

We now introduce the Restricted Uniform Inequality of Gradients (RUIG)[24]. We first

use the form of F written as a sum over functions fi, so that we can introduce the RUIG.

Definition 2.1 (RUIG). The Restricted Uniform Inequality of Gradients states that if we con-

sider all w⃗ within balls Dϵ :=
�

w⃗ ∈ Rd : ∥w⃗ − w⃗ ∗∥2 > ϵ
	

for all ϵ > 0, then we assume

the existence of non-negative constantsµ,γ ∈ R such that P
�

∥∇ fi (w⃗)∥
2 ≥ µ∥w⃗ − w⃗ ∗∥2

�

≥
γ for all i > 0.

In essence, the RUIG places a bound on the probability that the norm squared of

the gradient of each of the fi is greater than the squared distance between two vectors

w⃗ , w⃗ ∗.

We also introduce the RUIL [23].

Definition 2.2 (RUIL). The Restricted Uniform Inequality of Loss states that if we consider

all w⃗ within balls Dϵ :=
�

w⃗ ∈ Rd : ∥w⃗ − w⃗ ∗∥2 > ϵ
	

for all ϵ > 0, then we assume the exis-

tence of some non-negative constantsµ,γ ∈ R such that P
�

X⃗ξi

�

�w⃗ − w⃗ ∗
�2
≥ µ∥w⃗ − w⃗∥2
�

≥
γ for all i > 0.

Here X⃗ξi
is some stochastic vector (which in our scenario is a random row within X⃗),

and we also use the “bra-ket” notation for an inner product4.

3This technicality has come about because we aim to replicate the form of Least Squares Regression

used in [19].
4〈x⃗ | y⃗〉= 〈x⃗ , y⃗〉. We will continue to use the bra-ket notation for the rest of this report.

Page 4

2.2 AdaGrad-Norm

This can be thought of as an analogue for the RUIG but for loss in linear regression

instead of the norm of the gradient; note in particular how the RUIL mimics the RUIG

how the stepsize update in AdaLoss mimics the stepsize update in AdaGrad-Norm.

We can now build up the tools necessary to prove stochastic convergence for AdaGrad-

Norm in the manner of [23], whilst fleshing out aspects of their proof. We start with

several lemmas.

Lemma 1. 5 Under the assumption of RUIG for AdaGrad-Norm (or RUIL for AdaLoss),

there exists ϵ > 0 such that after

τ :=

�

η2λ̄2
1 − b2

0

µγϵ
+
δ

γ

�

+ 1 (9)

steps we have either

1. bτ > ηλ̄1, or

2. mint

�

∆2
t := ∥w⃗ t − w⃗ ∗∥2

�

≤ ϵ

with probability 1−δ1 where

δ1 := exp
�

−
δ2

2 (Nγ (1− γ) +δ)

�

,

and δ is a parameter which we can tune as we wish [24].

Proof. Under RUIG, define the random variables Z j, Z =
∑

j Z j defined such that

Z j =

(

1 if

∇ fξt
(w⃗ t)

2 ≥ µ∆2
t > ϵµ (otherwise the proof is complete),

0 otherwise.
(10)

From RUIG we have that P
�

Z j = 1
�

≥ γ, and via Bernstein’s Inequality6 we sum over all

Z j, and apply the inequality to P(|Z − Nγ|> δ)≤ δ1. We then write:

P(|Z − Nγ|> δ)≤ δ1,

P(|Nγ− Z | ≤ δ)> 1−δ1,

P(Z ≥ Nγ−δ)> 1−δ1.

5We have corrected the result seen in Lemma A.1 in [23], by picking up a factor η not seen in their

result.
6Bernstein’s Inequality places an upper bound of the form P(|X − np| ≥ t)≤ exp

�

−t2/(np− p2 + bt)
�

up to some constant factors in the RHS [24].

Page 5

2.2 AdaGrad-Norm

Here we have used the idea that if P(X > a) ≤ b, then P(X ≤ a) > 1− b. Using this

result for Z , we now sum up

b2
τ
= b2

0 +
τ−1
∑

t=0

∇ fξt
(w⃗ t)

2
> b2

0 +µϵ (γN −δ)≥ η2λ̄2
1, (11)

where the result follows from rearranging for N to get at our value for τ after demanding

an integer solution.

We turn to Lemma 2.

Lemma 2. 7 Considering AdaGrad-Norm, for k0 ∈ (0, N − 1] s.t. ∃ bk0
> ηλ̄1 and

bk0−1 < ηλ̄1, we have that

∆2
k0−1 ≤∆

2
0 +η

2

�

ln

�

η2λ2
1

b2
0

�

+ 1

�

. (12)

Proof. Begin by noting

∆2
k0−1 =

w⃗ k0−2 −
ηg⃗ k0−2

bk0−1
− w⃗ ∗

2

(13)

=

w⃗ k0−2 − w⃗ ∗

2
+

ηg⃗ k0−2

bk0−1

2

− 2

�

ηg⃗ k0−2

bk0−1

�

�

�

�

w⃗ k0−2 − w⃗ ∗
�

. (14)

Proceeding after noting the last term is non-negative via the definition of an inner

product,

∆2
k0−1 ≤∆

2
k0−2 +

ηg⃗ k0−2

bk0−1

2

(15)

=∆2
k0−2 +

η2

g⃗ k0−2

2

b2
k0−1

(16)

≤∆2
0 +η

2
k0−2
∑

t=0

g⃗ t

2

b2
t+1

. (17)

Note that the change of index and introduction of the sum comes from telescopically

expanding ∆2
k0−2 from the defintion of our scheme in (4). We now write b2

t+1 in its

explicit form to see

∆2
k0−1 ≤∆

2
0 +η

2
k0−2
∑

t=0

g⃗ t

2

b2
0 +
∑t

p=0

g⃗ p

2 . (18)

7We correct the result seen in Lemma A.2 in [23], by picking up a factor of η in the logarithm term.

Page 6

2.2 AdaGrad-Norm

Then, noting the integral of an expression in a summation is always larger than the

summation we write the bound as

∆2
k0−1 ≤∆

2
0 +η

2

�

ln

�

τ−2
∑

t=0

g⃗ t

/b2
0

�

+ 1

�

(19)

≤∆2
0 +η

2

�

ln

�

η2λ̄2
1

b2
0

�

+ 1

�

, (20)

where in the last line we recall our definition of k0.

Lemma 3. 8 For AdaGrad-Norm, with our definition of k0 in Lemma 2 we have that

(bM :=maxt bk0+t)≤ ηλ̄1 +
λ̄1
η ∆

2
k0−1.

Proof. We write, in a similar manner to the proof of Lemma 2,

∆2
k0+t =∆

2
k0+t−1 +η

2

g⃗ k0+t−1

2

b2
k0+1

− 2η
1

bk0+t

g⃗ k0+t−1 −∇ fk0+t−1 (w⃗
∗)
�

�w⃗ k0+t−1 − w⃗ ∗
�

,

(21)

where we make use of the fact that ∇ ft (w⃗
∗) = 0 by definition of the convexity of ft and

RUIG. Now

∆2
k0+t ≤∆

2
k0+t−1 +

η2

b2
k0+1

g⃗ k0+t−1

2 −
2η

bk0+tλ̄1

g⃗ k0+t−1 −∇ fk0+t−1 (w⃗
∗)

 (22)

≤∆2
k0+t−1 +

g⃗ k0+t−1

2

�

η2

b2
k0+t

−
2η

bk0+tλ̄1

�

(23)

≤∆2
k0+t−1 −

g⃗ k0+t−1

2 η

bk0+tλ̄1

(24)

≤∆2
k0−1 −

t
∑

j=0

g⃗ k0+ j−1

2 η

bk0+ jλ̄1

, (25)

where (23) follows from our bound on the L-smoothness of ft via (8), (24) follows from

the bound on bk0
, and (25) follows from a telescopic expansion. Then we have

t
∑

j=0

g⃗ k0+ j−1

2 1
bk0+ j
≤
λ̄1

η

�

∆2
k0−1 −∆

2
k0+t

�

. (26)

We first express b j+1 in a new form before proceeding. We have

b2
j = b2

0 +
j−1
∑

i

g⃗ i

2

b2
j+1 = b2

0 +
j
∑

i

g⃗ i

2























⇒b2
j+1 − b2

j =
�

b j+1 − b j

� �

b j+1 + b j

�

=

g⃗ j

2
,

8Here we arrive at the same result as Lemma A.3 in [23].

Page 7

2.3 Proof of AdaGrad-Norm Convergence in Least Squares

and so b j+1 = b j +

g⃗ j

2
/
�

b j+1 + b j

�

. Using (26) in this result (with j + 1→ k0 + t) we

have

bk0+t ≤ bk0−1 +
t
∑

j=0

g⃗ k0+ j−1

2 1
bk0+ j

(27)

≤ ηλ̄1 +
λ̄1

η
∆2

k0−1. (28)

We now have all the pieces we need to complete the proof of convergence in the

stochastic, least squares case.

2.3 Proof of AdaGrad-Norm Convergence in Least Squares

From Lemma 1 we have shown the existence of a τ such that bτ > ηλ̄1. Recalling our

k0, we now add that k0 < τ; k0 is the first time index such that bt > ηλ̄1. We then write,

if k0 ≥ 1,

∆2
k0+t =∆

2
k0+t−1 +

η2

b2
k0+t

g⃗ k0+t−1

2 −
2η

bk0+t

w⃗ k0+t−1 − w⃗ ∗
�

�g⃗ k0+t−1

�

(29)

≤∆2
k0+t−1 +

�

η2λ̄1

b2
k0+t

−
2η

bk0+t

�

w⃗ k0+t−1 − w⃗ ∗
�

�g⃗ k0+t−1

�

(30)

≤∆2
k0+t−1 −

η

bk0+t

w⃗ k0+t−1 − w⃗ ∗
�

�g⃗ k0+t−1

�

(31)

≤∆2
k0+t−1 −

η

bM

w⃗ k0+t−1 − w⃗ ∗
�

�g⃗ k0+t−1

�

, (32)

where (32) follows from Lemma 3. Now recall that g⃗ is a stochastic gradient chosen

such that E [g⃗] =∇F . Also note that F is λ̄m−strongly convex9. Thus

E
�

∆2
k0+t

�

≤∆2
k0+t−1 −

η

bM

w⃗ k0+t−1 − w⃗ ∗
�

�∇F
�

(33)

≤
�

1−
ηλ̄m

bM

�

∆2
k0+t−1 ≤ Πt=0

�

1−
ηλ̄m

bM

�

∆2
k0−1 (34)

≤ exp
�

−λ̄m t/bM

	

∆2
k0−1. (35)

2.3.1 Markov’s Inequality

We introduce Markov’s Inequality which states that for all a > 0,P (X ≥ a) ≤ E [X]/a
[11].

9α-strong convexity is the condition that

∇2F

≥ α, where our α := λ̄m as ∇2F = x⃗⊤ x⃗/m [1].

Page 8

2.3 Proof of AdaGrad-Norm Convergence in Least Squares

Proof. First introduce

Y =

(

1 if X ≥ a,

0 otherwise.

Now we have two cases. Either X ≥ a then Y = 1 and so Y ≤ X/a, or X < a and so

Y = 0 ≤ X/a, achieving equality iff X = 0. Thus E [Y] = P(Y = 1) = P(X ≥ a) ≤
E [X]/a.

First note that we can re-express Markov’s Inequality as

P (X ≤ a)≥ 1−E [X]/a. (36)

We then apply Markov’s Inequality in the form (36) to the inequality (35) to get, for

some small parameter δ2,

P
�

∆2
k0+t ≤

1
δ2

exp
�

−λ̄m t/bM

	

∆2
k0−1

�

≥ 1−δ2. (37)

We now need to find some number of steps t̂ which would satisfy ∆2
k0+ t̂ ≤ ϵ when

inserted into the inequality in (37). This t̂ is simply bM

λ̄m
ln
�

∆2
k0−1/(ϵδ2)
�

.

Let us take count of how many timesteps we need in sum. In the case where b0 < ηλ̄1,

we first have at least τ steps from Lemma 1, then another t̂ steps; let us define the total

number of steps in this case as T1.

For convenience we first define

Γ :=∆2
0 +η

2

�

2 ln

�

ηλ̄1

b0

�

+ 1

�

(38)

from the bound we placed in (20) onto the ∆2
k0−1 term in Lemma 3. Then, to have

∆2
T1
≤ ϵ with probability greater than 1−δ1 −δ2, we require

T1 =









η2λ̄2
1 − b2

0

µγϵ
+
δ

γ
+
λ̄1

�

η+ 1
ηΓ
�

λ̄m

ln
�

Γ

ϵδ2

�









+ 1. (39)

Alternatively if k0 = 0 then b0 > ηλ̄1, and so we do not need the first τ steps but we

replace ∆2
k0−1 with ∆2

0, such that we need

T2 =

&

b0 +
λ̄1
η ∆

2
0

λ̄m

ln

�

∆2
0

ϵδ2

�

'

+ 1 (40)

steps to attain the same bound ∆2
T2
≤ ϵ with probability greater than 1−δ2. Thus, we

have shown convergence for AdaGrad-Norm in the stochastic setting for least squares

regression regardless of the choice of b0 and η.

Page 9

2.4 AdaLoss

2.4 AdaLoss

We perform a very similar analysis on AdaLoss as done in [23]. In order to show

stochastic convergence for the least squares problem, we go through the same proof as

we did for AdaGrad-Norm. Recall the proof for Lemma 1. We note that replacing the

term

∇ fξt
(w⃗ t)

2
in (10) with

X⃗ξt

�

�w⃗ − w⃗ ∗
�2

, we have the same result but under RUIL,

so we have proved this lemma for the AdaLoss case, again with the corrected factor of η

compared to Lemma A.1 in [23].

Moving to Lemma 2, note that in the case of AdaLoss the proof proceeds the same

way until (18). Now consider that the (stochastic) gradient g⃗ t = X⃗
⊤
ξt

�

X⃗ξt
w⃗ − y⃗
�

/m

and thus that

g⃗ t

2 ≤ λ̄1

X⃗ξt

�

�w⃗ t − w⃗ ∗
�2

- so we can finish the rest of the proof for the

lemma with an additional factor of λ̄1 multiplying the η2 term outside the logarithm

compared to the AdaGrad-Norm case, and again picking up the corrected factor of η

inside the logarithm as compared to Lemma A.2 in [23]. We state this as

Lemma 4. Considering AdaLoss, for k0 ∈ (0, N − 1] s.t. ∃ bk0
> ηλ̄1 and bk0−1 < ηλ̄1, we

have that ∆2
k0−1 ≤∆

2
0 + λ̄1η

2
�

ln
�

η2λ2
1

b2
0

�

+ 1
�

.

We now state an equivalent for Lemma 3 in the case of AdaLoss, which provides an

equivalent result to Lemma A.3 in [23].

Lemma 5. For AdaLoss, in our definition of k0 in Lemma 4 we have that (bM :=maxt bk0+t)≤
ηλ̄1 +

1
η∆

2
k0−1.

The proof starts by writing

∆2
k0+t =∆

2
k0+t−1 +η

2

X⃗ξt

2

X⃗ξt

�

�w⃗ k0+t−1 − w⃗ ∗
�2

b2
k0+1

−
2η

bk0+t

X⃗ξt

�

�w⃗ k0+t−1 − w⃗ ∗
�

X⃗ξt

�

�w⃗ k0+t−1 − w⃗ ∗
�

(41)

≤∆2
k0+t−1 +

η

bk0+t

�

ηλ̄1

bk0+t
− 2

�

X⃗ξt

�

�w⃗ k0+t−1 − w⃗ ∗
�2

(42)

using the expression for the bound on the gradient. We note that (42) is just the same

expression (with a different form for the bound on the gradient squared inserted) as

(23), but with an extra factor of λ̄1 in the rightmost term due to the step update term

in AdaLoss. This directly gets us to the expression in Lemma 5 (which is just the same

bound as Lemma 3 but with the rightmost term scaled by 1/λ̄1). Therefore, for AdaLoss,

(in a similar manner to AdaGrad) we first define

Γ̃ :=∆2
0 +η

2λ̄1

�

2 ln

�

ηλ̄1

b0

�

+ 1

�

, (43)

Page 10

Theoretical Comparison of AdaLoss and AdaGrad-Norm

so that if b0 < ηλ̄1 we require

T̃1 =









η2λ̄2
1 − b2

0

µγϵ
+
δ

γ
+
λ̄1

�

η+ 1
ηλ̄1
Γ̃
�

λ̄m

ln

�

Γ̃

ϵδ2

�









+ 1 (44)

steps, and if b0 > ηλ̄1 we require

T̃2 =

¢

b0 +
1
η∆

2
0

λ̄m

ln

�

∆2
0

ϵδ2

�

¥

+ 1 (45)

steps, to achieve the same bounds ∆2
T̃1

,∆2
T̃2
≤ ϵ with the same respective probabilities as

in the case of AdaGrad-Norm.

3 Theoretical Comparison of AdaLoss and AdaGrad-Norm

We start by the assumption that λ̄1 ≥ 1. This condition is quite nice in the sense that λ̄1

is the largest singular value of X⃗
⊤

X⃗ , to a scalar factor of 1/m, so λ̄1 may be reasonably

thought to hold such a lower bound.

Now consider our expressions for T1 and T̃1 in (39) and (44) respectively, in particular

the non-shared terms which depend on Γ and Γ̃ (defined in (38) and (43) respectively)

which we write as functions of λ̄1 and b0. In T1 these terms take the form
�

∆2
0λ̄1 + Aλ̄1 + λ̄1 ln

�

λ̄1/b0

��

ln
�

∆2
0 + B + ln
�

λ̄1/b0

��

, (46)

while in T̃1 they take the form
�

∆2
0 + Cλ̄1 + λ̄1 ln
�

λ̄1/b0

��

ln
�

∆2
0 + D+ λ̄1 ln
�

λ̄1/b0

��

, (47)

for constants A, B, C , D. We see that if we let ∆2
0 dominate (which we expect as this is

the norm squared of the difference of the initial weights and final weights) the bound on

T1 is greater than the bound on T̃1, assuming the other terms in T1, T̃1 which we have

neglected are either small enough to ignore or of similar size such that we can ignore

them. In particular, we let η = 1 since having shown that the ratio of b0 to η is what

determines the maximum number of stepsizes, in practical implementations we expect

to leave η= 1 and vary b0.

Moving to consider T2 and T̃2 (in (40) and (45) respectively), note that T2 ≥ T̃2

under our assumption that λ̄1 ≥ 1. Of course, these results are the worst-case scenarios,

and as we have also considered the stochastic case the element of randomness will

always play a role, as these are simply guarantees for a worst-case bound on the time

for convergence. In order to try and glean some practical insight into these methods, let

us proceed to a computational implementation.

Page 11

Practical Implementation

4 Practical Implementation

We implement all our code using Python, via series of functions which given input data

output a series of weights and the losses incorporated iteratively on the data they were

trained on. All code is available in Appendix ??.

4.1 Synthetic Data

Consider the least squares problem in (7). The aim of this problem is given a matrix X⃗ ,

set of initial weights w⃗ , and a vector of outputs y⃗ , to gradually update the weights to

minimise the loss of our problem (i.e. the residual).

Let us first introduce another algorithm we shall employ, AMSGrad, in the same

manner as done in [13]; AMSGrad has also been shown to converge with assumptions

on knowledge of the Lipschitz constant in e.g. [25] and we merely present it in order to

further discuss alternative methods against SGD. The scheme is defined as

AMSGrad: x⃗ t+1 = x⃗ t −
ηt
Æ

B⃗t+1

m⃗ t+1,











m⃗ t+1 = β1m⃗ t + (1− β1) g⃗ t ,

b⃗t+1 = β2 b⃗t + (1− β2) g⃗
2
t ,

B⃗t+1 =max
�

B⃗t , b⃗t+1

�

,

(48)

with {ηt}N−1
0 being pre-defined as ηt := η/

p
t. Furthermore we define β1,β2 ∈ (0,1]

with β1 <
p

β2; we choose to initialise β1 = 0.2,β2 = 0.3 to fulfil this condition. We

also initialise m⃗0 = b⃗0 = B⃗0 = 0.

We define an initial matrix X⃗ ∈ R1000×101 which is populated in every entry barring the

first column by Gaussians with µ= 0,σ2 = 1 (the initial matrix is generated R1000×100,

however, we then add a column such that X⃗ i,0 = 1 to account for bias terms which do not

depend on values of w⃗). We also generate a (seeded) random vector w⃗ ∗ ∈ R101 which

represents the “true” values of the weights, and compute y⃗ := X⃗ w⃗ ∗ ∈ R1000. We also

generate a seeded random vector w⃗ ∈ R101 which represents our initial guess for the

weights. For our problem, the “free” parameters we have are b0 and η, or in particular

their ratio, which we set as the initial learning rate for all methods for a fair comparison.

By setting η = 1 for all tests and choosing a range of b0, we should be able to get an

idea of how these methods perform in different regimes.

We define our b0 values as10 b0,k := 10k for k :=
�

−3+ j
�

10
39

�	

, j = 0, · · ·39 such

that we may test a wide range of b0. We run for 3000 iterations and sample the average

10What this is saying is that we have simply run a linspace command to generate 40 equidistant

values for k between −3 and 7.

Page 12

4.1 Synthetic Data

normed-difference11 at iterations of 500,1000, and 3000. For comparison, we run

AdaGrad, AdaGrad-Norm, AdaLoss, AMSGrad, and SGD. We present the synthetic results

in Figure 1.

(a) Average normed-difference after t = 500

iterations.

(b) Average normed-difference after t = 1000

iterations.

(c) Average normed-difference after t = 3000

iterations.

Figure 1: Plots of least-squares average normed-difference on synthetic data after t

iterations of various optimisation algorithms as a function of initial parameter b0, for

initial stepsize η= 1.

Note immediately how ill-parameterisation for SGD presents disastrous results: for

values of b0 ⪅ 102 we see final average normed-differences which rapidly blow up to

11I.e. 1
2m

X⃗ w⃗ − y⃗

. We use this metric out of computational convenience as this normed-difference

is already called within our weight-generating functions. Ordinary least squares losses would just be

quadratic scalings of the losses we plot; the aim of the plots we produce are more to draw comparison

against SGD and other methods than for benchmarking against existing values, particularly as we run

bespoke parameterisation for both synthetic and real life data.

Page 13

4.2 Housing Dataset

greater than 10100. We see that in general, the methods we have discussed perform well

with AdaGrad, AdaGrad-Norm, and AdaLoss performing better than AMSGrad overall,

and particularly after 3000 iterations as seen in Figure 1(c). We also note that while

AdaLoss in general outperforms AdaGrad-Norm, this is not the case when b0 ⪅ 10−1;

below this point AdaGrad-Norm seems to outperform the other methods by at least an

order of magnitude which is best seen in Figure 1(a).

Importantly we observe that the two methods we discussed in detail in the linear

regression setting, AdaGrad-Norm and AdaLoss, are indeed robust to initialisation;

achieving small (< 100) average normed-differences after 3000 iterations for virtually

all values of b0. AMSGrad however seems to not show much improvement as iterations

increase which perhaps suggests further study might be needed on AMSGrad in the

stochastic linear regression regime.

4.2 Housing Dataset

We now move on to the California Housing Dataset [17] which contains data on census

block groups, or CBGs (CBGs being the smallest geographical grouping in the U.S.

census), from the 1990 Californian census. This dataset has data from 20,640 CBGs

corresponding to 20, 640 rows each with 8 different features per CBG: Median Household

Income, House Age, Average number of Rooms, Average number of Bedrooms, Population

in CBG, Average number of Household Members, Latitude, and Longitude. This data is all

represented in the matrix we call X⃗ , and the target, or y⃗ , is the median household price

per CBG. The weights w⃗ are just the weightings we apply to the features listed above

to try and determine a formula for accurately predicting the median house price. This

dataset was chosen for several reasons: it is a large, pre-processed, and numerical dataset

with no missing entries12. There is much room for discussion on optimal pre-processing

of real data for machine learning (such as via imputing missing values) but this clearly

falls beyond the scope of this report and thus we have opted to focus on analysing

pre-processed data.

Upon importing the data we immediately perform a 80% : 20% training-to-testing

split on the data such that we leave an “untouched” set of data which we can use to check

our model once we have our final weights derived from the various optimisation methods.

We also scale our features X⃗ , by subtracting the mean for each feature and normalising

the variance to 1; applying the training dataset’s scaling to the testing dataset. We

12There is an alternative version of this dataset which contains a non-numerical feature which is the

proximity to water, but the version used (via scikit-learn) does not have such a feature by default.

Page 14

4.2 Housing Dataset

scale to ensure gradient searches are not skewed heavily in one specific feature which

might have massively different scales on data; for example in our dataset we expect

roughly similar values for latitude with far less variance than median income, or median

population. More concretely, when updating gradients, w⃗ t might oscillate if we have

wildly varying feature scales, leading to erratic jumps in the gradient; particularly for

co-ordinate based methods such as AdaGrad. Also of note is the key fact that we scale the

testing sample using the same parameters gleaned from the training sample; such that

we do not incorporate any information on the testing sample values when we evaluate

our generated weights.

After scaling the data we train our models for t = {200, 500, 800} iterations, for the

same range of b0 values as in our synthetic data13. The results for this implementation

can be seen in Figure 2.

Again we see the large sensitivity to initial conditions that is present in SGD; for all

iterations sampled we see divergence when b0 is less than about 101. AdaGrad-Norm

appears to perform the best for small values of b0, but AdaLoss quickly catches up to

attain comparable average normed-difference values at lower and lower values of b0,

from around 100 at 200 iterations to around 10−1 at 800 iterations. AMSGrad performs

poorly for small values of b0 (particularly in the same regime where AdaLoss performs

notably worse than AdaGrad-Norm), but attains similar results as other methods for

higher values of b0, beyond ≈ 102. Further, we see that AdaGrad outperforms AdaLoss

but not AdaGrad-Norm in the regime of b0 < 10−1, but gives performance worse than

AdaLoss and better than AdaGrad-Norm for values of b0 roughly beyond this range.

We can zoom into the region b0 ∈ [10−0.1, 100.1] (which appears to be the region with

the best values for average normed-difference for non-SGD methods), again with 40

equidistant points sampled in this region (but this time we ignore any SGD information

given the large average normed-differences this method attains). We present the results

in Figure 2(d).

Here we can see how AdaLoss and AdaGrad-Norm perform quite similarly. Noting

that scikit-learn SGDRegressor, which uses a modified SGD with a varying stepsize

of η/t1/4 for a limit of 1000 iterations [16], produces average normed-differences of

O(10−2), we observe that this result underperforms our model by an order of magnitude

in this scenario. AMSGrad and AdaGrad in this regime both slightly underperform both

AdaGrad-Norm and AdaLoss, but the difference is negligible when considering these

methods all out-perform SGDRegressor, as well as our implementation of SGD.

13That is to say, b0,k := 10k for k :=
�

−3+ j
�

10
39

�	

, j = 0, · · ·39 for a total of 40 different values tested.

Page 15

4.2 Housing Dataset

(a) Average normed-difference after t = 200

iterations.

(b) Average normed-difference after t = 500

iterations.

(c) Average normed-difference after t = 800

iterations.

(d) Zoom on average normed-difference after

t = 800 iterations, no SGD plotted.

Figure 2: Plots of average normed-difference on the Housing Dataset after t iterations of

various optimisation algorithms as a function of initial parameter b0, for initial stepsize

η= 1.

Of course, these results are for a small range of b0; however we have shown exper-

imentally that both AdaGrad-Norm and AdaLoss still seem to converge regardless of

choice of initial parameters and so in industrial contexts running a wide initial array of

values for a basic hyperparameter search might be in order. Certainly, we have shown

that the results in “extreme” initial parameters (referring to both incredibly large and

incredibly small b0) lead to far better results than one might achieve with SGD for this

dataset, with the exception of a small range of b0 ∈ [101, 104]. This constraint on b0 for

SGD is highly suboptimal in industrial contexts as it is impossible to know a priori what

range of values guarantees convergence. A parameter sweep might be brought up for a

Page 16

Conclusion

possible rectification to guarantee convergence in which case it is true that SGD presents

lower minimum average normed-differences for both the methods we have discussed,

but clearly it a far more reliable choice to simply use AdaGrad-Norm or AdaLoss which

on average presents far better results.

5 Conclusion

In this report, we have looked at two adaptive stepsize methods, AdaLoss and AdaGrad-

Norm, in both theoretical and practical contexts for the setting of stochastic linear

regression. We have shown in theory that not only are these two methods robust to

initial parameterisation, but also demonstrated scenarios in which AdaLoss potentially

has lower limits on iterations needed for convergence than AdaGrad-Norm. Further, we

have explored these methods in experimental contexts for both synthetically generated

data, as well as on a real-world dataset in order to back up the claims we made in theory.

These findings present further exploration of the application of these two methods to

those found in literature and bolster the claims that these methods might prove useful

in further industrial contexts for machine learning.

There are clear extensions demonstrated in this report. Primarily, there is very

little literature comparing the methods we have discussed (AdaGrad-Norm, AdaLoss,

AMSGrad) in the stochastic linear regression setting which encapsulates a discussion

of practical implementation. As stated earlier in the report, while there are theoretical

bounds for the convergence rates for all these methods, these bounds do not translate

directly into measures of performance. We have only looked at these in two simple

cases; further exploration is necessary in order to examine if these methods might serve

to replace SGD (or related methods such as those implemented in SGDRegressor) as

standard tools.

Page 17

References

6 References

[1] Anderson Ang. Some Special Classes of Function in Optimization - L.S.C, Convex,

Strongly Convex, Lipschitz, Smooth, Etc. Nov. 9, 2022. URL: https://angms.
science/doc/CVX/CVX_alphabeta.pdf (visited on 11/25/2022).

[2] Phil Blunsom and Matthew Fellows. University of Oxford, Department of Computer

Science: Machine Learning - Michaelmas Term 2022. Lectures. URL: https://
www.cs.ox.ac.uk/teaching/materials22-23/ml/lectures/ (visited on

11/19/2022).

[3] Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for

RMSProp and ADAM in non-convex optimization and an empirical comparison to

Nesterov acceleration. Number: arXiv:1807.06766. Nov. 20, 2018. DOI: 10.48550/
arXiv.1807.06766. arXiv: 1807.06766[cs,math,stat]. URL: http://
arxiv.org/abs/1807.06766 (visited on 11/20/2022).

[4] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A Simple

Convergence Proof of Adam and Adagrad. Number: arXiv:2003.02395. Oct. 17,

2022. arXiv: 2003.02395[cs,stat]. URL: http://arxiv.org/abs/2003.
02395 (visited on 11/22/2022).

[5] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization”. In: Journal of Machine Learning

Research 12.61 (2011), pp. 2121–2159. URL: http://jmlr.org/papers/v12/
duchi11a.html.

[6] Saeed Ghadimi and Guanghui Lan. Stochastic First- and Zeroth-order Methods for

Nonconvex Stochastic Programming. Number: arXiv:1309.5549. Sept. 21, 2013.

DOI: 10.48550/arXiv.1309.5549. arXiv: 1309.5549[cs,math,stat]. URL:

http://arxiv.org/abs/1309.5549 (visited on 11/23/2022).

[7] Jean Lafond, Nicolas Vasilache, and Léon Bottou. Diagonal Rescaling For Neural

Networks. Number: arXiv:1705.09319. May 25, 2017. DOI: 10.48550/arXiv.
1705.09319. arXiv: 1705.09319[cs,stat]. URL: http://arxiv.org/abs/
1705.09319 (visited on 11/19/2022).

[8] Kfir Levy. “Online to Offline Conversions, Universality and Adaptive Minibatch

Sizes”. In: Advances in Neural Information Processing Systems. Vol. 30. Curran Asso-

ciates, Inc., 2017. URL: https://proceedings.neurips.cc/paper/2017/

Page 18

https://angms.science/doc/CVX/CVX_alphabeta.pdf
https://angms.science/doc/CVX/CVX_alphabeta.pdf
https://www.cs.ox.ac.uk/teaching/materials22-23/ml/lectures/
https://www.cs.ox.ac.uk/teaching/materials22-23/ml/lectures/
https://doi.org/10.48550/arXiv.1807.06766
https://doi.org/10.48550/arXiv.1807.06766
https://arxiv.org/abs/1807.06766 [cs, math, stat]
http://arxiv.org/abs/1807.06766
http://arxiv.org/abs/1807.06766
https://arxiv.org/abs/2003.02395 [cs, stat]
http://arxiv.org/abs/2003.02395
http://arxiv.org/abs/2003.02395
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.48550/arXiv.1309.5549
https://arxiv.org/abs/1309.5549 [cs, math, stat]
http://arxiv.org/abs/1309.5549
https://doi.org/10.48550/arXiv.1705.09319
https://doi.org/10.48550/arXiv.1705.09319
https://arxiv.org/abs/1705.09319 [cs, stat]
http://arxiv.org/abs/1705.09319
http://arxiv.org/abs/1705.09319
https://proceedings.neurips.cc/paper/2017/hash/ce5140df15d046a66883807d18d0264b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ce5140df15d046a66883807d18d0264b-Abstract.html

References

hash/ce5140df15d046a66883807d18d0264b-Abstract.html (visited on

11/19/2022).

[9] Xiaoyu Li and Francesco Orabona. On the Convergence of Stochastic Gradient

Descent with Adaptive Stepsizes. Number: arXiv:1805.08114. Feb. 26, 2019. arXiv:

1805.08114[cs,math,stat]. URL: http://arxiv.org/abs/1805.08114
(visited on 11/22/2022).

[10] Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien.

“Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Con-

vergence”. In: Proceedings of The 24th International Conference on Artificial In-

telligence and Statistics. International Conference on Artificial Intelligence and

Statistics. ISSN: 2640-3498. PMLR, Mar. 18, 2021, pp. 1306–1314. URL: https://
proceedings.mlr.press/v130/loizou21a.html (visited on 11/20/2022).

[11] Sriram Pemmaraju. CS:5360 Randomized Algorithms. CS:5360 Randomized Al-

gorithms - Lecture 4. Sept. 2019. URL: https://homepage.cs.uiowa.edu/
~sriram/5360/fall18/ (visited on 11/27/2022).

[12] Tran Thi Phuong and Le Trieu Phong. “On the Convergence Proof of AMSGrad

and a New Version”. In: IEEE Access 7 (2019), pp. 61706–61716. ISSN: 2169-3536.

DOI: 10.1109/ACCESS.2019.2916341. arXiv: 1904.03590[cs,math,stat].

URL: http://arxiv.org/abs/1904.03590 (visited on 11/22/2022).

[13] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence of Adam

and Beyond. Number: arXiv:1904.09237. Apr. 19, 2019. DOI: 10.48550/arXiv.
1904.09237. arXiv: 1904.09237[cs,math,stat]. URL: http://arxiv.
org/abs/1904.09237 (visited on 11/21/2022).

[14] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The

Annals of Mathematical Statistics 22.3 (1951). Publisher: Institute of Mathematical

Statistics, pp. 400–407. ISSN: 0003-4851. URL: https://www.jstor.org/
stable/2236626 (visited on 11/22/2022).

[15] Sebastian Ruder. An overview of gradient descent optimization algorithms. Number:

arXiv:1609.04747. June 15, 2017. DOI: 10.48550/arXiv.1609.04747. arXiv:

1609.04747[cs]. URL: http://arxiv.org/abs/1609.04747 (visited on

11/21/2022).

[16] sklearn.linear_model.SGDRegressor. scikit-learn. URL: https://scikit-learn/
stable/modules/generated/sklearn.linear_model.SGDRegressor.
html (visited on 11/30/2022).

Page 19

https://proceedings.neurips.cc/paper/2017/hash/ce5140df15d046a66883807d18d0264b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ce5140df15d046a66883807d18d0264b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ce5140df15d046a66883807d18d0264b-Abstract.html
https://arxiv.org/abs/1805.08114 [cs, math, stat]
http://arxiv.org/abs/1805.08114
https://proceedings.mlr.press/v130/loizou21a.html
https://proceedings.mlr.press/v130/loizou21a.html
https://homepage.cs.uiowa.edu/~sriram/5360/fall18/
https://homepage.cs.uiowa.edu/~sriram/5360/fall18/
https://doi.org/10.1109/ACCESS.2019.2916341
https://arxiv.org/abs/1904.03590 [cs, math, stat]
http://arxiv.org/abs/1904.03590
https://doi.org/10.48550/arXiv.1904.09237
https://doi.org/10.48550/arXiv.1904.09237
https://arxiv.org/abs/1904.09237 [cs, math, stat]
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1904.09237
https://www.jstor.org/stable/2236626
https://www.jstor.org/stable/2236626
https://doi.org/10.48550/arXiv.1609.04747
https://arxiv.org/abs/1609.04747 [cs]
http://arxiv.org/abs/1609.04747
https://scikit-learn/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
https://scikit-learn/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
https://scikit-learn/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

References

[17] The California housing dataset — Scikit-learn course. URL: https://inria.
github.io/scikit-learn-mooc/python_scripts/datasets_california_
housing.html (visited on 11/21/2022).

[18] Cheik Traoré and Edouard Pauwels. “Sequential convergence of AdaGrad al-

gorithm for smooth convex optimization”. In: Operations Research Letters 49.4

(July 1, 2021), pp. 452–458. ISSN: 0167-6377. DOI: 10.1016/j.orl.2021.
04.011. URL: https://www.sciencedirect.com/science/article/pii/
S0167637721000651 (visited on 11/19/2022).

[19] Rachel Ward, Xiaoxia Wu, and Leon Bottou. AdaGrad stepsizes: Sharp convergence

over nonconvex landscapes. Number: arXiv:1806.01811. Apr. 18, 2021. DOI: 10.
48550/arXiv.1806.01811. arXiv: 1806.01811[cs,stat]. URL: http://
arxiv.org/abs/1806.01811 (visited on 11/19/2022).

[20] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin

Recht. The Marginal Value of Adaptive Gradient Methods in Machine Learning. Num-

ber: arXiv:1705.08292. May 21, 2018. DOI: 10.48550/arXiv.1705.08292.

arXiv: 1705.08292[cs,stat]. URL: http://arxiv.org/abs/1705.08292
(visited on 11/21/2022).

[21] Xiaoxia Wu, Simon S. Du, and Rachel Ward. Global Convergence of Adaptive Gradi-

ent Methods for An Over-parameterized Neural Network. Number: arXiv:1902.07111.

Oct. 19, 2019. DOI: 10.48550/arXiv.1902.07111. arXiv: 1902.07111[cs,
math,stat]. URL: http://arxiv.org/abs/1902.07111 (visited on 11/20/2022).

[22] Xiaoxia Wu, Rachel Ward, and Léon Bottou. WNGrad: Learn the Learning Rate in

Gradient Descent. Number: arXiv:1803.02865. Nov. 19, 2020. DOI: 10.48550/
arXiv.1803.02865. arXiv: 1803.02865[cs,math,stat]. URL: http://
arxiv.org/abs/1803.02865 (visited on 11/19/2022).

[23] Xiaoxia Wu, Yuege Xie, Simon Shaolei Du, and Rachel Ward. “AdaLoss: A Computationally-

Efficient and Provably Convergent Adaptive Gradient Method”. In: Proceedings

of the AAAI Conference on Artificial Intelligence 36.8 (June 28, 2022). Number:

8, pp. 8691–8699. ISSN: 2374-3468. DOI: 10.1609/aaai.v36i8.20848. URL:

https://ojs.aaai.org/index.php/AAAI/article/view/20848 (visited

on 11/19/2022).

[24] Yuege Xie, Xiaoxia Wu, and Rachel Ward. Linear Convergence of Adaptive Stochastic

Gradient Descent. Number: arXiv:1908.10525. Mar. 6, 2020. DOI: 10.48550/

Page 20

https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
https://doi.org/10.1016/j.orl.2021.04.011
https://doi.org/10.1016/j.orl.2021.04.011
https://www.sciencedirect.com/science/article/pii/S0167637721000651
https://www.sciencedirect.com/science/article/pii/S0167637721000651
https://doi.org/10.48550/arXiv.1806.01811
https://doi.org/10.48550/arXiv.1806.01811
https://arxiv.org/abs/1806.01811 [cs, stat]
http://arxiv.org/abs/1806.01811
http://arxiv.org/abs/1806.01811
https://doi.org/10.48550/arXiv.1705.08292
https://arxiv.org/abs/1705.08292 [cs, stat]
http://arxiv.org/abs/1705.08292
https://doi.org/10.48550/arXiv.1902.07111
https://arxiv.org/abs/1902.07111 [cs, math, stat]
https://arxiv.org/abs/1902.07111 [cs, math, stat]
http://arxiv.org/abs/1902.07111
https://doi.org/10.48550/arXiv.1803.02865
https://doi.org/10.48550/arXiv.1803.02865
https://arxiv.org/abs/1803.02865 [cs, math, stat]
http://arxiv.org/abs/1803.02865
http://arxiv.org/abs/1803.02865
https://doi.org/10.1609/aaai.v36i8.20848
https://ojs.aaai.org/index.php/AAAI/article/view/20848
https://doi.org/10.48550/arXiv.1908.10525
https://doi.org/10.48550/arXiv.1908.10525

References

arXiv.1908.10525. arXiv: 1908.10525[cs,math,stat]. URL: http://
arxiv.org/abs/1908.10525 (visited on 11/19/2022).

[25] Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu.

On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization. Num-

ber: arXiv:1808.05671. Oct. 19, 2020. DOI: 10.48550/arXiv.1808.05671.

arXiv: 1808.05671[cs,math,stat]. URL: http://arxiv.org/abs/1808.
05671 (visited on 11/20/2022).

Page 21

https://doi.org/10.48550/arXiv.1908.10525
https://doi.org/10.48550/arXiv.1908.10525
https://doi.org/10.48550/arXiv.1908.10525
https://arxiv.org/abs/1908.10525 [cs, math, stat]
http://arxiv.org/abs/1908.10525
http://arxiv.org/abs/1908.10525
https://doi.org/10.48550/arXiv.1808.05671
https://arxiv.org/abs/1808.05671 [cs, math, stat]
http://arxiv.org/abs/1808.05671
http://arxiv.org/abs/1808.05671

	Introduction
	Overview of Methods
	AdaGrad
	AdaGrad-Norm
	Least Squares Regression with AdaGrad-Norm

	Proof of AdaGrad-Norm Convergence in Least Squares
	Markov's Inequality

	AdaLoss

	Theoretical Comparison of AdaLoss and AdaGrad-Norm
	Practical Implementation
	Synthetic Data
	Housing Dataset

	Conclusion
	References

