
Case Study in Scientific Computing:

Image Colourisation

Zella Baig
HT23

1 Introduction

Image colourisation is concerned with trying to recolour a greyscale image given a

small amount of information of the true colour values at some points within the image.

In practical contexts, this problem may arise out of wanting to recolourise historic

photographs, or simply to restore information which has been lost (such as e.g. destroyed

frescos of which there exist black-and-white photography).

1.1 Images

In the context of this problem we consider only rectangular images. We consider images

of two different formats: JPEG and PNG, chosen for their ubiquity on the web1. The

main difference between the two formats which is of concern to our project is that while

JPEG images store three colour channels containing information on red, green, and

blue intensity (which we refer to as the “RGB values”), PNG images contain an optional

fourth “alpha” channel which contains information on transparency [9] and hence must

be accounted for.

Before proceeding, we take a small detour to discuss “floats” and “integers” in the

context of computing. An integer can be thought of as a data type representing a value in

the set Z. Unsigned integers are then simply all non-negative integers: unsigned integers

contain no information of whether they are positive or negative. Floats or floating-point

values are then to integers in computing what the reals are to integers in mathematics,

with the caveat that floats are never stored exactly. For example, in Python, floats are

stored by default to “double precision”, or 53 bits worth of precision [1].

We now refer to n-bit values, a general concept within computing. This concept

refers to data types that can store any value using up to n bits of their associated type

(either integers or floats). For example, an 8-bit unsigned integer may store any integer

n which lies 0 ≤ n ≤ 255 (= 28 − 1), while a signed 8-bit integer may store any value

integer between −128 and 127. Related to this concept is the idea of “integer overflows”,

which is what happens when a value is written in a format which cannot support it, such

as trying to store 256 in an 8-bit unsigned integer format [15]. In this case, the value

stored would “wrap around” and be stored as 0.

Proceeding and ignoring the existence of the alpha channel for the moment, an

image of size N × M pixels can be thought of as an N × M array, with each entry of

this array containing RGB values for a single pixel. For a given channel, the intensity

1For an unrigorous illustration via a webscraper, see [18].

of the colour can range from 0 to a maximum value (either 1.0 as a float, or 255 as an

unsigned 8-bit integer).

2 Formulation of Problem

We wish to mathematically represent our problem. To this end, consider a domain Ω

comprising of discrete points {zi} , 1≤ i ≤ m. Here each zi represents a pixel within our

domain Ωwhich corresponds to the image itself. Also define a subset of Ω, D := {x i}, 1≤
i ≤ n, which represents the pixels within Ω which have associated colour information

given. Importantly we place the bound that n< m and that x i = z j for some z j, for all i.

This serves to impose the condition that we have fewer coloured pixels than there are

pixels in the image, and that each coloured point does indeed correspond to some pixel

in the image.

We also define the greyscale map γ : Ω→ I3
γ
; I3
γ

:=
�

(i, i, i) ∈ Z3|0≤ i ≤ 255
	

at all

Ω. In other words, γ represents a map from a given point zk to a tuple of three values

which we shall use to represent the RGB values (rk, gk, bk) at the pixel associated with

zk. Further, we impose the condition that rk = gk = bk to ensure that the resulting tuple

is a shade of grey (with white represented by (255,255,255) and black by (0,0,0)).

We formalise knowing the colour information in D by defining the map f : D→ I3 :=
�

(i, j, k) ∈ Z3|0≤ i, j, k ≤ 255
	

where I3 relaxes the condition that the RGB values must

be the same. The goal of the colourisation is to find a map F : Ω→ I3 such that F |D ≈ f |D,

that is to say that we expect the RGB values mapped by F to approximately equal the

true values known by f within D. We also introduce the notation F c
j to represent the

RGB information of a point z j in a single colour channel, i.e. c ∈ {r, g, b}. Similarly, let

γ j be shorthand for representing the greyscale information (γ j,γ j,γ j) at point z j.

In order to obtain the greyscale information at a given point we define the monochrome

luminance signal [19] as

γ j = 0.3r j + 0.59g j + 0.11b j. (1)

This linear combination of the RGB values at a given point then allows us to construct an

artificially coloured grey image, which we may then subsequently add colour information

to.

2.1 Kernels

Before further exploration of the mathematical formulation of the problem let us take a

moment to examine kernels. Kernels allow us to represent comparisons between different

abstract objects x i, which lie in some set X, as matrices K with entries Ki, j = k(x i, x j)

for some function k(x , y) : X × X → R. Importantly we are able to do this whilst

remaining agnostic to the actual form of the objects themselves provided we can define

an appropriate k [14]. For a more concrete formulation, we desire k to be some function

which computes the similarity of the elements x , y . If we consider x , y to just be cartesian

coordinates, a simple example might be k(x , y) := ∥x − y∥. Here, k is large when x , y

are very far apart from one another, and small when x , y are close.

Let us bring this idea back to image recolourisation. We define the radial basis

function kernel K using

k(zi, z j) := φ

�

ξi − ξ j

2

σ1

�

φ

�
�

�γi − γ j

�

�

ρ

σ2

�

, (2)

for some parameters {ρ,σ1,σ2} and function φ(r) := exp
�

−r2
�

, where ξi is the eu-

clidean position of point zi within our rectangular image. Let us examine this kernel in

more detail.

φ(r) is a positive function with a maximal value of 1 at the origin, and which tends

to 0 as its argument grows. Furthermore,

ξi − ξ j

2
is just the metric on L2 space

of two given points within the image, and
�

�γi − γ j

�

� is a measure of the difference of

greyscale values between those two points as well. Thus, we can say that (up to scaling

by ρ,σ1,σ2) this kernel represents a measure of similarity of pixel location and greyscale

value, approaching a maximum of 1 when the two points are both close and of similar

greyscale values, and approaching a minimum of 0 when these two points are very far,

different in greyscale value, or satisfy both these criteria. In the section that follows let

us build up a method of colourising an image with the information that we have, in a

very similar procedure to that in [5].

For z ∈ Rm, ac ∈ Rn, let us consider the map F c(· ; ac) of the form

F c(· ; ac) :=
n
∑

j=1

k
�

· , z j

�

ac
j . (3)

We claim that such a map serves as a “recolourisation” map for a given colour channel c,

with the justification for doing so being that (3) maps similarity in both position and

greyscale2 between a given pixel in Ω and the colourised points, with weightings ac
j .

2In other words all the information we have for a given pixel in the greyscale image.

Now consider the functional

L(F c) =
1
n

n
∑

i=1

(F c(zi; ac)− f c(zi))
2 +δ∥F c(·; ac)∥2 (4)

which may be thought of as a least-squares-esque loss function between F c and f c with

an additional “smoothing” term associated with the parameter δ, for a colour channel

c ∈ {r, g, b}. Importantly, we know the map f c is just the specific colour information for

a given channel c for all the coloured pixels in our otherwise greyscale image. We seek to

minimise this functional with respect to ac, which corresponds to seeking the weights in

F c that lead to the “best-possible” recolourisation of our image when measuring against

how much recolourised RGB values differ for points that we have true RGB information

for.

To proceed, let us first define the matrix KD ∈ Rn×n via (KD)i, j := k(zi, z j), and

subsequently note that
n
∑

i=1

F c(zi; ac) = KDac, (5)

and

∥F c(·; ac)∥2 = (ac)T KDac. (6)

Using (5) - (6), and noting that

∂
∑n

i=1 (F
c(zi; ac)− f c(zi))

2

∂ ac
= 2

n
∑

i=1

(F c(zi; ac)− f s(zi))
T KD, (7)

we take ∂ac of (4) to see that

∂ac L(F c) =
2
n

KD

�

KDac − f̄ c +δnac
�

, (8)

where f̄ c := (f (z1) , f (z2) , · · · , f (zn))
T . Setting the left hand side in (8) to 0 we see

that, provided KD is non-singular, the unique root of this expression occurs when

ac = (KD +δnI)−1 f̄ c. (9)

Using this result, we may insert the values ac
j into (3) in order to construct our map

F c; importantly, we have shown that F c as defined by ac in (9) is the best possible map

of the form specified.

Further, we wish to implement this colourisation routine in a program with an

associated graphical user interface (GUI). The goal with such an implementation is that

an end user should be able to select a given image, have it be converted to greyscale,

have some colour added back in, and then finally recoloured.

3 Computational Solution

Now that we have established the mathematical overview of the problem, let us discuss

the broad principles which will underline our computational approach towards this

problem.

Upon loading the image, we desire the greyscale image to be represented in an

N ×M array. Note here we derive m, the number of elements in Ω, via the relationship

m := MN . Further, we assume that we already have n pixels within this greyscale image

array to have colour information inserted at the points {x i}, and let us also assume that

we know the indices of the array at which these points reside.

As an aside, note that we also discard any transparency information by enforcing a

pure white background where there is any transparency information. In this manner we

do not need to consider this aspect of PNGs.

We also note that as as F c acts on every pixel within Ω, it would be computationally

ideal to try to create vectorised functions which bypass the need for lengthy for-loops

over each pixel. Using this as motivation, we seek methods to allow us to compute the

resulting N ×M matrix via a series of matrix operations. Consider the matrix KD, which

is simply the n× n kernel matrix evaluated at each of the points where we have colour

information and is the first thing we require to construct ac, whose values are then used

when constructing our map F c. We note, by considering (3), that we can construct this

matrix map without looping over indices if, for example, we generate an m× n matrix T

(where Ti, j = k(zi, x j)), right multiply by the n× 1 vector ac, and reshape.

Crucially, this allows us to generate T without consideration of which colour channel

we are currently filling in; in (3) it is only the ac
j values which depend on the channel

and as such our matrix T may be thought of as a “template” matrix, depending only on

the kernel with the kernel functions k(zi, x j) taking all zi ∈ Ω and all x j ∈ D. Perhaps

the most appealing aspect of such an approach however, is the fact that we expect in

the colourisation that the construction of this matrix T to be the most computationally

intensive step. In general, the number of total pixels is greater than the number of

coloured pixels input, and for large images this can be true by several orders of magnitude.

Thus, by constructing T before we solve for ac, we potentially reduce computation time

by a factor of three (via not needing to repeat the calculation for each of the three colour

channels).

Using these steps, we can now construct a code template of how we might colourise

an image which we present as Code 1, which while seemingly simple actually presents

a fair amount of complexity hidden in the steps to construct KD, T , and Tac when we

consider practical limitations. We present further discussion of these in Section 4.1.

Code 1: Pseudocode for main colourisation function

def colourise:

Construct KD;

Construct T ;

for c = {r, g, b} do

Compute ac = (KD +δnI)−1 f̄ c;

Compute Tac;

Reshape Tac to an N ×M matrix Lc;

Set the image colour channel in c to Lc;

end

4 Practical Implementation

For the practical implementation of this project, we chose to use Python for several

reasons, with the two primary reasons as follows.

1. Access to a wide library of both scientific, diagnostic, and GUI packages to applica-

tion with aesthetically pleasing results.

2. Familiarity with the language over alternatives such as e.g. MATLAB.

With this decision in mind, one of the first choices to make was to decide on the GUI

framework to utilise. The choice of these frameworks was in some way guided by the

decision to work with Matplotlib [6], a Python visualisation library, for the displaying of

the images generated. Some of the choices considered for the GUI were Matplotlib itself

(given the capability for interactive figures), PyQT [11] (a Python toolkit incorporating

the popular Qt framework, featuring extensive customisability), and Tk [17], a standard

Python interface.

The decision was made to go with Tk given the somewhat simpler learning curve,

and native support of Matplotlib interactive figures within Tk windows. However, one

of the key drawbacks of going with Tk was the somewhat dated UI; this issue was

rectified by instead switching to go with CustomTkinter [12], a drop-in replacement for

Tk which comes stylised with “modern” presents for the appearance of objects within

the framework, such as buttons.

The next major decision to enact was the structure of the overall project, in terms of

whether to approach the problem via an object-oriented-programming (OOP) approach,

in which we consider “objects” which have “attributes” which may be altered via “meth-

ods” [21], compared to a procedural programming approach [22] in which we have

“procedures” (or functions) which linearly act upon some object to alter it.

The decision was made to go with the OOP approach given that the structure of the

project lent itself far more readily to such an implementation, for several reasons. Firstly,

GUIs lend themselves incredibly well to implementations in OOP paradigms given the

structure of the actual “windows” which themselves can be split into objects such as

buttons, displays, and the like - each of which may be altered in predefined manners.

Furthermore, in OOP methods different “classes” of objects may “inherit” from other

classes; this idea can be extended quite readily to modularise the codebase such that

we would be able to completely detach the main GUI from any function which would

colourise images. Not only would this lend itself to rapid extension and reformation

of the codebase without harming functionality of aspects which do not relate to one

another3, but it also ensures a cleaner codebase since methods and attributes could be

constrained to their own class. An example of this may be to have a method to construct

buttons, which would be limited to the GUI class. We present a pseudocode outline of

the structure of the project in Code 2, given in Appendix B.

Another practical decision made was to employ version control via Git [4]. This would

enable the project to have a synced workflow, and also enable concurrent development

of new features to be implemented in the codebase (which are then “merged” when

finished) without risking the main trunk.

For the computational aspect of the implementation, we work extensively with NumPy,

a library with a plethora of in-built matrix manipulation functions which importantly

also offers vectorisation, in which many operations take place in pre-compiled C code

(allowing for much faster performance, with the main drawback being the requirement

for typed data within ndarrays, the NumPy equivalent of a Python array) [20].

4.1 Numerical Constraints

Several issues presented themselves when commencing work on the project, primarily

concerning memory allocation. Let us take a moment to explore this in more detail,

within the context of NumPy, and our matrix T . We also note that when loaded, JPEG

3Concretely, if the colourisation class is separated from the GUI class, neither of the two would rely

upon the other such that they may be developed concurrently.

and PNG files are converted to arrays containing tuples of RGB values in each of the

m entries. However, these values may either be stored as unsigned 8-bit integers, or

as floats. As we perform matrix operations on this array which leads to arithmetic

which is not constrained in any way, we must immediately convert these values to floats

before further processing within our colourisation routine. This prevents, for example,

incurring overflows performing a multiplication on an unsigned integer which leads to a

value greater than 255.

Consider now 64-bit floating point values (the “standard” for non-integer values in

NumPy), which each occupy 64 bits in memory [3]. Now consider loading a 1000×1000

image, coloured with n = 1000 pixels (which amounts to 0.1% of the image being

coloured), which when loaded via Matplotlib into a NumPy array takes the form of

a 1000 × 1000 × 3 array. The matrix T is then a 10002 × 1000 × 3 array of 64-bit

values, which amounts to ≈ 7.5 gibibytes (GiB) - approaching the 8 GiB available to

most consumer-grade laptops in sum. Despite it being possible to construct some arrays,

such as if no intermediate arrays were created (which are created by default in NumPy

expressions), but we sought to protect against memory loss issues as even just the

creation of the GUI entails further memory usage.

A reasonable, and straightforward solution at this point is to instead perform any

construction of large matrices columnally. However, this involves lengthy for-loops,

which add significant timing costs for our program. We explored different avenues to

speed this process up. One of the initial avenues we explored was to employ just-in-time

compilation with Numba [7], a Python library which allows certain functions (largely

limited to NumPy and pure Python functions) to be compiled to C code at execution,

potentially allowing for significant boosts in execution times for functions where there

does not exist a NumPy replacement.

However, this approach did not yield any notable benefit as the benefit of faster

processing times for images came with the drawback of a notable time to compile

the requisite binaries; on the iteration of the program tested Numba was slower when

running on a single small (≈ 250× 250 pixel) image. Further, casting the code in a

format which allowed for Numba compliance (incorporating loops going over array

indices as opposed to array slicing) further slowed code down, but did indeed solve the

issue of running out of memory. Nevertheless, given the performance issues for smaller

images we sought another solution.

The next library we tried was NumExpr [8], a limited library compatible with a

select few NumPy and Python functions, which nevertheless offers speeds up to an

order of magnitude faster for certain operations on large arrays. NumExpr achieves

this performance boost through automatic parallelisation of the parsed code, which

is “chunked” (or split into smaller elements) before being run on a virtual machine

(written in C) on the CPU. Further, NumExpr avoids any allocation of memory for steps

between input and output leading to further memory access reduction. This enormous

performance increase (resulting in a real time boost of several seconds for images ∼
700×700 pixels in size, which initially took ∼ 10 seconds) came with another drawback

alongside the aforementioned non-support of most NumPy functions, namely that array

slicing is not supported; this ultimately did not present too much issue as predefining the

slices of arrays to be evaluated and then passing this new variable to NumExpr was still

faster than either NumPy, or via trying this approach in Numba-based methods. Thus,

the decision was made to, wherever possible, utilise the NumExpr method.

At this point the only further memory-related issue to consider was consideration of

if the matrix T was small enough to load into memory entirely or not; in the former case

the operation Tac could be done in one step as outlined in the Code 1, else this operation

would need to be done columnally as discussed in this section. For a comparison we ran

benchmarking on an artificial scenario where we constructed an image of m pixels, with

m varying from 25 to 800. We assumed n = 500 (leading to the unrealistic scenario

where m< n; this is not a real concern in this section as we seek simply to profile our

methods) and ran two different tests comparing the construction of Tac outside the

colour channel loop (the “fast method”), and another bypassing the construction of T

in its entirety and instead performing the construction Tac =
∑n

j=1 T ja
c
j (the “efficient4

method”), thereby only needing to construct a given column T j at a time. The results are

shown in Figure 1, where it is clearly seen that the “fast” method utilises exponentially

more memory as m increases. On the other hand, whilst both methods display an

exponentially increasing time to generate the colourised image, the “fast” method rises

at a much slower rate against m.

5 Results

In our final program note that we have, beyond the allocation of n randomly placed

coloured pixels, incorporated two further methods to add colour information into the

greyscale image:

1. Via the “Color by Pixel” method5 the user is able to select a colour from a palette,

4Efficiency here means memory-related efficiency.
5The decision was made to keep all in-program spellings to the American versions as to not clash with

(a) Average peak memory usage for the

“efficient” and “fast” methods as a function of

m.

(b) Average time usage for the “efficient” and

“fast” methods as a function of m.

Figure 1: Comparison of averaged performance metrics of the “efficient” and “fast”

methods for construction of Tac when colourising an image as a function of the number

of pixels on input image (m), sampling over 10 values of m and repeated thrice per m.

and apply a “paintbrush” type effect where a brush of varying size may be used to

colour the image.

2. Via the “Color by Grid” method the user may manually place a 2 × 2 block of

correctly coloured pixels onto the greyscale image by selecting with the mouse.

Further, we allow for on-the-fly updating of the parameters δ,ρ,σ1, and σ2, as well

resetting of the colourised image such that an alternative colourisation base may be set.

A screenshot6 of the final GUI is presented in Figure 2.

5.1 Dataset

Prior to further discussion of results, note that all training and analysis is done on a set

of 60 images split into two subcategories: “cartoon” and “real life” style images. Each of

these subcategories is then split into two with half the images being 256× 256 pixels,

and the other half being 512× 512 pixels.

NumPy spellings, which use American versions.
6Note that part of the filepaths in the screenshot have been obscured to hide identifying information.

Figure 2: Screenshot of the GUI, with the original 512× 512 image (“bridge-512”) on

the top left, the greyscale image on the top right, the greyscale image with n= 500

randomly placed pixels with the correct colour on the bottom left, and the colourised

result on the bottom right.

5.2 Optimisation

As is seen qualitatively from Figure 2, the colouriser works to a reasonable degree: with

only ≈ 0.008% of the pixels initially coloured in, we get an image which appears broadly

correctly coloured to the eye. In order to determine a more quantitative measure for

the success of our method, we must define some cost function C . In order to do so, let

us first define by Lc
0 as the colour information for all z ∈ Ω in channel c of the original

image, i.e. the “true colour” in channel c. Then we define

C :=
1
m

�

0.3
�

�L r − L r
0

�

�+ 0.59
�

�L g − L g
0

�

�+ 0.11
�

�Lb − Lb
0

�

�

�

, (10)

corresponding to (roughly) a weighted measure of how incorrect each pixel in the

colourised image is, on average. Note that we weight each colour channel using the

same weights as in the monochrome luminance signal, in the hopes that these weights

give some impression of how “important” each colour channel is; alternatively this may

just be thought of as comparing the grey images (by channel) generated by Lc and Lc
0.

With this cost function one of the first things we examined was normalising distances

when constructing either T or KD. To elaborate, the first φ term in (2) takes as an input

the euclidean norm of the two points given to the kernel. In this sense the parameter σ1

is some measure of both the scale of the image, as well as of how similar the distances

between those two points are. We examine if we achieve better results using C if

we normalise this distance by, for example, dividing the norm by m. We expect once

normalised, σ1 should only account for the similarity of distances and so for any given

parameter set, provide better values of C . In order to test this hypothesis, we run both

versions on all 60 images in our dataset, and present the results in Table 1.

Method: Normalised Un-normalised

Mean C: 6.4 8.0

Variance C: 27.04 18.49

Table 1: Comparison of normalised and un-normalised kernel on all 60 images in

dataset, for δ = 1× 10−4,ρ = 0.2,σ1 = σ2 = 100, and n= 0.001m coloured pixels for

each image.

Thus, while the normalised method seems to present a lower mean value for our

cost function, we cannot say conclusively if it provides any significant benefit given the

large variances. Examining the histogram of losses for the two methods (presented in

Figure 9 in Appendix A) further supports the idea that it is potentially more beneficial

to use the normalised kernel, given the distribution of losses appears to be concentrated

at lower values of C .

Investigating now the effect of the parameters input into the model, we ran an

optimisation routine on different images using BenderOpt [16], a hyperparameter

optimisation library which utilises Tree-Structured Parzen Estimators [2], a standard

method for black-box hyperparameter optimisation when the function being evaluated

either does not have a gradient or is difficult to compute.

The optimisation routine was ran for 250 iterations on each image in the 256× 256

pixel image set with a seeded 66 pixels chosen to be coloured in7. The losses (from our

cost function C), and parameter values associated with the run which led to the lowest

cost were recorded.

Looking at only “real life” images we examine the parameters that lead to the

minimum value of C in our optimisation run for the 15 images we test, shown in Table

2. We note that whilst we have been able to ascertain order-of-magnitude results for all

the parameters, there is a very large amount of variance within σ1 and δ, as well as a

significant amount within σ2.

766 being ≈ 0.001m for m= 2562.

Parameter: C δ σ1 σ2 ρ

Mean: 5.4 2.6× 10−3 62.7 101.3 0.9

Variance: 11.56 1.7× 10−5 1.9× 103 7.40× 102 4.0× 10−2

Table 2: “Best loss” parameter mean values and variances ran on 15× “real life” images

of 256× 256 pixels in size.

Similarly, when ran on “cartoon” images we present present results in Table 3.

Immediately, we can see that both σ1 and σ2 seem to be “type”-agnostic, displaying

similar means and variances in either case. However, ρ falls by a third as we go from

“real life” to “cartoon” images. Similarly, the mean of C over the datasets appears to

fall as well. This latter result is somewhat as expected; “cartoon” images have sharper

edges and less colour gradients and so need fewer n to build up an “idea” of what other

colours in the image should look like.

Parameter: C δ σ1 σ2 ρ

Mean: 2.3 2.7× 10−3 60.9 93.5 0.6

Variance: 6.3 6.4× 10−5 1.6× 103 1.2× 103 4× 10−2

Table 3: “Best loss” parameter mean values and variances ran on 15× “cartoon” images

of 256× 256 pixels in size.

Further, at first glance the δ values also do not seem to change, which seems a

surprising result as δ pertains to the smoothing we apply within the image. However,

inspecting the dataset, we see that if we exclude the results for “green-circle-256.png”,

which has an optimal delta parameter of 3.2× 10−3, the mean for δ falls to 6.2× 10−5

and the variance falls to 2.9 × 10−6, clearly straying significantly from the values as

for “real life” images. Nevertheless, let us set the “best-loss” values for the “real life”

and “cartoon” datasets as Pr and Pc respectively, to be used in future reference when

appropriate.

When looking at the parameters, we expect information (and location) to play a

significant role, given the “decay” of the radial basis functions the further away we

attempt to colourise on the image. To illustrate, consider Figure 3; giving no information

on the yellow background leads to a colourisation of the closest value in greyscale (i.e.

the light blue of the eyes) as shown in 3(c).

We also expect that as we increase the number of pixels initially supplied with colour

information, we achieve lower C values. We check for this behaviour this by using Pr

(a) Original 256× 256 picture

of an Among Us Crewmate.

(b) Among Us Crewmate

(colourised) with 1 pixel

initially coloured in each

“block” of colour.

(c) Among Us Crewmate

(colourised) with 1 pixel

initially placed in only the light

blue and both red “blocks” of

colour.

Figure 3: Comparison of final results when colourising a cartoon image with 1 pixel in a

given colour “block”, performed with Pc.

to test the 256× 256 pixel image dataset, and record losses as a function of increasing

n. The results are as expected, showing a clear decrease in C as n rises from 50 pixels

to 200 pixels; this information is not surprising given that a greater n leads to more

points information being given from which to define the kernel, which then acts on the

rest of the pixels in the image. We run the test five times at each given value of n to

calculate the costs associated with that n. A chart of the results for varying n can be

seen in Figure 10 in Appendix A.

We can also investigate the effect of the parameter δ, as done in Figure 4. Note how

δ visually acts to “smooth” the image; higher values of δ result in a more washed out

colourised image.

Looking atσ1 andσ2, we expect these to relate to how “far” the colourisation method

can reach other pixels. Figure 11 (shown in Appendix A) illustrates how σ1 represents a

parameter relating to the closeness of colour; when σ1 is small (in Figure 11(a)) we lose

information outside the points where the image has colour information, and so end up

with dark “shadows”. Similarly as we increase σ1 we weight local information less and

so we lose e.g. small blotches of colour that are locally confined; this is shown as we

lose the blues of the sky as we increase σ1 from 1 to 10 in Figure 11(b) to Figure 11(c).

Similarly, we expect σ2 to play a role in differentiating greyscale information, and

indeed with the image “dore-512.jpg” we get a particularly illustrative result, as shown

in Figure 5. This example features only shades of grey and red, and by setting σ1 low

(a) Original 512× 512

landscape painting.

(b) Painting (colourised) with

δ = 1. Note the “washing out”

of the yellow tint over the

entire image, noticeable

particularly on the mountains

in the back.

(c) Painting (colourised) with

δ = 1× 10−8. Note the distinct

edges on colours visible on the

mountains in the background.

Figure 4: Comparison of effects of δ on a 512× 512 image coloured with 500 randomly

placed pixels at Pr , but with varied δ.

we can increase the “resolution” at which we examine these colour differences; in other

words a low σ1 ensures we focus on information which is physically close to a given

pixel. Then looking at σ2, we see clearly how as σ2 increases, the kernel incorporates

similarities between further shades of grey. This washes out the image as we can see

in Figure 5(c) at very large σ2; note in particular how the dark shadows of the cave

represent themselves as a dark-grey cloud in the upper half of the image, while the

foreground takes on a different shade.

The parameter ρ pertains to the greyscale information; its action is to pre-scale the

difference in greyscale values by some power (reducing the difference if less than 1 or

increasing if greater than 1. In essence, asρ increases from 0 to 1 we expect less emphasis

on greyscale differences, acting in some measure as a smoothing parameter akin in

greyscale space. The behaviour ρ exhibits is as expected with our results which show a

lower value of ρ for “cartoon” images; the solid colour divisions naturally have different

greyscale values which thus give more useful information than on a “real life” image.

However, we note that the colourisation breaks down if we increase ρ past 1; this is again

as expected in some sense as it can be shown the kernel K2(x , y) := exp
�

−∥x − y∥2ρ2 /σ
2
	

is not positive definite for ρ ≥ 1, as shown in e.g. [13]. This result extends to our

case given our K is a composite of K2; colourisation in our model with ρ ≥ 2 results in

randomly coloured artefacts present in the image.

(a) Original artwork of cave. (b) Artwork of cave

(colourised) with σ2 = 101.3.

(c) Artwork of cave

(colourised) with σ2 = 1× 104.

Figure 5: Comparison of effects of σ2 on a 512× 512 image coloured with 500

randomly placed pixels at δ = 2.6× 10−3,σ1 = 1,ρ = 0.9, but σ2 is varied. Note that

σ1 is set low to enhance colour discrimination from the reds of the lake with the

otherwise greyscale image.

5.2.1 Personal Extension

An alternative method to colourisation might be to utilise the greyscale information

which we already know at any given point zi, from (1). Recall that in our Code 1 we

construct the final image one layer at a time. Instead, it is possible to use the information

known from the relationship

Γ = 0.3L r + 0.59L g + 0.11Lb, (11)

defining Γ as the M × N matrix of greyscale values. We test whether this improves our

results by fixing the parameters δ,σ1,σ2, and ρ for a given dataset8 (using the entire

256× 256 pixel image dataset), and comparing the C values generated via the “normal”

way (i.e. via generating each Lc) against utilising (11) for each of Lc for c ∈ {r, g, b}.
We run ten different tests for varying numbers n of randomly coloured initial pixels

given, using an unseeded generator for the random pixels coloured. For each n, we

calculate the mean of the losses over each image five times across the dataset for the

images of the specified type, and present the results as well as the standard deviations

for each data point. We set the parameters to somewhat arbitrary values to simulate

not knowing a-priori what the best parameters would be for a given image; within this

extension we would like to explore whether our knowledge of Γ helps suppress C values

regardless of any other information we may have on the image besides n. The results

8In other words, we set these parameters to the values that led to “best-loss” results in Section 5.2.

are given in Figure 6.

(a) Comparison of different colourisation

methods for “real life” dataset.

(b) Comparison of different colourisation

methods for “cartoon” dataset.

Figure 6: Comparison of averaged C values for different 256× 256 pixel images

recolourised via different methods. All images were run with δ = 1× 10−4,

σ1 = σ2 = 100, and ρ = 0.5. n was varied between 50 and 200 over 10 sample points,

and each run at a given n was repeated 5 times.

Immediately note the decrease of loss C for both datasets as n increases, showing the

behaviour we expect. As a broad trend, we note that solving for L g from (11) appears to

give better results than either the original method or for solving for any of the other two

colours, while solving for Lb gives worse results. Further note that at these differences

are more pronounced at lower values of n. This behaviour is somewhat as expected:

our method for calculating each image layer is bound to produce errors in the actual

colourisation of any given layer, and therefore using information which know to be

correct (via our knowledge of Γ), we can attempt to minimise losses by inferring the

relationship between the RGB and greyscale values, as opposed to introducing further

errors via trying to construct another Lc layer.

When performed on the green channel, which has the highest weighting in the

monochrome luminance signal, we note that by only calculating the red and blue

channels via Lc, we construct a much smaller “proportion” of a pixel’s RGB value

(assuming 0.3R+ 0.59G + 0.11B = 1), leading to a greater “proportion” being inferred

via (11). Similarly, when constructing Lb, the opposite argument holds as we have a

greater proportion of the RBG value based off of “bad” data. In the original method

the blue channel would introduce errors solely caused by its own construction, but by

solving for Lb we compound the errors introduced via L g and L r by assuming some fixed

relationship between these three values.

We note the large errors on our chart. This again, is expected, as we test over the

entire dataset with the same parameters, and also due to the random nature of pixel

placement. To try and examine this behaviour in closer detail, we sample a single image

for 20 values of n from 50 to 200, and rerun this test twenty times for a given value of

n, and present the results in Figure 7.

Figure 7: Analysis of cost against percentage of initial image coloured, on “knights-256”.

Run with δ = 1× 10−4,σ1 = σ2 = 100, and ρ = 0.5. n was varied between 50 and 200

over 20 sample points, and each run at a given n repeated 20 times.

In order to extend this idea, let us introduce some notation. Let Lc
1 be a colour

channel computed via the original method, that is via solving for Tac. Subsequently, let

Lc
2 be a layer solved for via (11). We can thus try computing the averaged method, in

which we define Lc
3 := 1

2(L
c
1+ Lc

2). While not requiring much more computational power

due to simply needing three sets of matrix operations after each Lc
1 has been generated

(each Lc
i being the size of the raw image and thus not unreasonably large), this method

proves (as shown in Figure 8) to provide good results.

In both of these tests ran, the “averaged” method seems to produce better results

than the other methods discussed, which is particularly clear in Figure 8(a) which is

ran on a single image. This method seems particularly attractive given the relatively

significant decreases in cost at the expense of a comparatively insignificant amount of

computational power, though further examination might also present us with different

weightings to apply to the parameters Lc
1 and Lc

2, rather than the equal weights which

are currently applied. However, note that if computational cost is at a premium then

perhaps solving for L g might be a better suggestion than the “averaged” method.

We can attempt to quantify the upper bound of the error for this method by first

defining the error in a colour channel for a method by ec
i :=
�

�Lc
i − Lc

0

�

�, and the scalar

(a) Analysis of cost on a single image from the

“real life” dataset using the “averaged” method.

(b) Analysis of average cost on all images from

the “real life” dataset using the “averaged”

method.

Figure 8: Comparison of “averaged” method to other colourisation methods, sampled

for twenty values of n between 50 and 200. Parameters were set to

δ = 1× 10−4,σ1 = σ2 = 100, and ρ = 0.5.

factor associated with the channel in the monochrome luminance signal as αc. Then, for

example in the red channel,

er
3 := αr

�

�

�

�

Lc
1 + Lc

2

2
− Lc

0

�

�

�

�

(12)

≤
αr

2

�

�L r
1 − L r

0

�

�+
αr

2

�

�L r
2 − L r

0

�

�. (13)

We can extend this calculation to each of the channels and sum to get

e3 ≤
e1

2
+
∑

c=r,g,b

αc

2

�

�Lc
2 − Lc

0

�

�. (14)

To quantify the sum in (14) we expand and therefore have
∑

c=r,g,b

αc

2

�

�Lc
2 − Lc

0

�

�=
αr

2

�

�L r
2 − L r

0

�

�+
αg

2

�

�L g
2 − L g

0

�

�+
αb

2

�

�Lb
2 − Lb

0

�

� (15)

=
1
2

��

�Γ −αg L g
1 −αb Lb

1 −αr L r
0

�

�+ . . .
�

(16)

=
1
2

��

�αg

�

L g
0 − L g

1

�

+αb

�

Lb
0 − Lb

1

��

�+ . . .
�

(17)

≤
1
2

�

(eg
1 + eb

1) + (e
r
1 + eb

1) + (e
r
1 + eg

1)
�

= e1, (18)

where we have thus placed an upper bound of 3
2 e1 on the “averaged” method. Never-

theless, it is possible to perform better than e1 in the case that the sum in (14) is less

than e1 itself; and potential further exploration of the behaviour of this method might

be illuminating.

6 Conclusions

Using kernel methods to recolourise images has been shown to be a viable approach,

up to computational constraints in handling large matrices. We have explored several

design decisions in the creation of a Python recolourisation program to ensure rapid

processing of computationally intensive calculations. Furthermore, we have examined

the effect parameter variation has in recolourisation of images. We have shown that the

number of pixels initially coloured in and then passed to the colouriser is the strongest

indicator of final colourisation performance, and also explored the role that various

parameters play within the radial basis function kernels which we have defined within

the kernel that we utilise to measure similarity of pixels.

We have further shown that recolourisation results generally vary both with image

type (between “cartoon” and “real life” images), and even between images of the same

type, with optimal values of parameters lying within a sizeable range relative to the

magnitude of the parameters themselves when applied to a dataset. In future work the

exploration of automatic optimisation of these parameters might be in order.

Lastly, we have explored the effect of utilising greyscale information when recolouring,

and have demonstrated it to generally improve results. Further we posit an alternative

method to incorporating this greyscale information which we dub the “averaged” method,

which we have also shown to improve colouriser performance even further. Exploration

of the mechanism behind why such behaviour occurs in a more rigorous context might

be of use for further applications.

7 References

[1] 15. Floating Point Arithmetic: Issues and Limitations. Python documentation. URL:

https://docs.python.org/3/tutorial/floatingpoint.html (visited

on 03/04/2023).

[2] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms for

hyper-parameter optimization”. In: Proceedings of the 24th International Conference

on Neural Information Processing Systems. NIPS’11. Red Hook, NY, USA: Curran

Associates Inc., Dec. 12, 2011, pp. 2546–2554. ISBN: 978-1-61839-599-3. (Visited

on 02/25/2023).

[3] Double Precision Floating Point - IBM Documentation. Jan. 20, 2023. URL: https:
//ibm.com/docs/en/aix/7.2?topic=types- double- precision-
floating-point (visited on 02/22/2023).

[4] Git. URL: https://git-scm.com/ (visited on 02/22/2023).

[5] Minh Ha Quang, Sung Ha Kang, and Triet M. Le. “Image and Video Colorization

Using Vector-Valued Reproducing Kernel Hilbert Spaces”. In: Journal of Mathe-

matical Imaging and Vision 37.1 (May 1, 2010), pp. 49–65. ISSN: 1573-7683. DOI:

10.1007/s10851-010-0192-8. URL: https://doi.org/10.1007/s10851-
010-0192-8 (visited on 02/20/2023).

[6] Matplotlib — Visualization with Python. URL: https://matplotlib.org/
(visited on 02/21/2023).

[7] Numba: A High Performance Python Compiler. URL: https://numba.pydata.
org/ (visited on 02/25/2023).

[8] NumExpr: Fast numerical expression evaluator for NumPy. original-date: 2013-11-

30T22:33:48Z. Feb. 24, 2023. URL: https://github.com/pydata/numexpr
(visited on 02/25/2023).

[9] PNG Specification: Data Representation. URL: https://www.w3.org/TR/PNG-
DataRep.html (visited on 02/19/2023).

[10] Pygame. URL: https://www.pygame.org/news (visited on 02/21/2023).

[11] Riverbank Computing | Introduction. URL: https://riverbankcomputing.
com/software/pyqt/ (visited on 02/21/2023).

[12] Tom Schimansky. TomSchimansky/CustomTkinter. original-date: 2021-03-04T17:24:00Z.

Feb. 22, 2023. URL: https://github.com/TomSchimansky/CustomTkinter
(visited on 02/22/2023).

https://docs.python.org/3/tutorial/floatingpoint.html
https://ibm.com/docs/en/aix/7.2?topic=types-double-precision-floating-point
https://ibm.com/docs/en/aix/7.2?topic=types-double-precision-floating-point
https://ibm.com/docs/en/aix/7.2?topic=types-double-precision-floating-point
https://git-scm.com/
https://doi.org/10.1007/s10851-010-0192-8
https://doi.org/10.1007/s10851-010-0192-8
https://doi.org/10.1007/s10851-010-0192-8
https://matplotlib.org/
https://numba.pydata.org/
https://numba.pydata.org/
https://github.com/pydata/numexpr
https://www.w3.org/TR/PNG-DataRep.html
https://www.w3.org/TR/PNG-DataRep.html
https://www.pygame.org/news
https://riverbankcomputing.com/software/pyqt/
https://riverbankcomputing.com/software/pyqt/
https://github.com/TomSchimansky/CustomTkinter

[13] I. J. Schoenberg. “Metric spaces and positive definite functions”. In: Transactions

of the American Mathematical Society 44.3 (1938), pp. 522–536. ISSN: 0002-9947,

1088-6850. DOI: 10.1090/S0002-9947-1938-1501980-0. URL: https:
//www.ams.org/tran/1938-044-03/S0002-9947-1938-1501980-0/
(visited on 02/21/2023).

[14] Bernhard Schölkopf, Jean-Phillipe Vert, and Koji Tsuda. Kernel Methods in Com-

putational Biology. July 16, 2004. DOI: 10.7551/mitpress/4057.001.0001.

URL: https://direct.mit.edu/books/book/3898/Kernel-Methods-
in-Computational-Biology (visited on 02/20/2023).

[15] The Web Application Security Consortium / Integer Overflows. URL: http://
projects.webappsec.org/w/page/13246946/Integer%20Overflows
(visited on 02/19/2023).

[16] Valentin Thorey. benderopt. original-date: 2017-03-13T15:05:14Z. Dec. 23, 2022.

URL: https://github.com/vthorey/benderopt (visited on 02/25/2023).

[17] tkinter — Python interface to Tcl/Tk. Python documentation. URL: https://docs.
python.org/3/library/tkinter.html (visited on 02/21/2023).

[18] Usage Statistics of Image File Formats for Websites, February 2023. URL: https:
//w3techs.com/technologies/overview/image_format (visited on

02/19/2023).

[19] John Watkinson. The MPEG handbook: MPEG-1, MPEG-2, MPEG-4, second edition.

2nd ed. Amsterdam, Boston: Elsevier/Focal Press, 2004. ISBN: 978-0-240-80578-8.

[20] What is NumPy? — NumPy v1.24 Manual. URL: https://numpy.org/doc/
stable/user/whatisnumpy.html (visited on 02/22/2023).

[21] What is Object-Oriented Programming (OOP)? - Definition from Techopedia. Techo-

pedia.com. URL: http://www.techopedia.com/definition/3235/object-
oriented-programming-oop (visited on 02/22/2023).

[22] What is Procedural Programming? - Definition from Techopedia. Techopedia.com.

URL: http://www.techopedia.com/definition/21481/procedural-
programming (visited on 02/22/2023).

https://doi.org/10.1090/S0002-9947-1938-1501980-0
https://www.ams.org/tran/1938-044-03/S0002-9947-1938-1501980-0/
https://www.ams.org/tran/1938-044-03/S0002-9947-1938-1501980-0/
https://doi.org/10.7551/mitpress/4057.001.0001
https://direct.mit.edu/books/book/3898/Kernel-Methods-in-Computational-Biology
https://direct.mit.edu/books/book/3898/Kernel-Methods-in-Computational-Biology
http://projects.webappsec.org/w/page/13246946/Integer%20Overflows
http://projects.webappsec.org/w/page/13246946/Integer%20Overflows
https://github.com/vthorey/benderopt
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://w3techs.com/technologies/overview/image_format
https://w3techs.com/technologies/overview/image_format
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
http://www.techopedia.com/definition/3235/object-oriented-programming-oop
http://www.techopedia.com/definition/3235/object-oriented-programming-oop
http://www.techopedia.com/definition/21481/procedural-programming
http://www.techopedia.com/definition/21481/procedural-programming

Appendices

A Further Results

Figure 9: Histogram of losses for the normalised and un-normalised methods, with bins

of 0.1 for 60 total images of varying size with 0.1% of pixels coloured.

Figure 10: Examination of average C varying with n as a percentage of the total number

of pixels for the “real life” dataset, tested with parameters Pr , for 10 values of n.

(a) Artwork (colourised) with

σ1 = 0.1.

(b) Artwork (colourised) with

σ1 = 1.

(c) Artwork (colourised) with

σ1 = 10.

Figure 11: Comparison of effects of σ1 on a 512× 512 image coloured with 500

randomly placed pixels at Pr , but with varied σ1.

B Code

Code 2: Outline of main program

class GUI:

method constructGUI:

Define button1;

. . . ;

end

method loadImage:

initialImage = code to load image here;

end

method generateImageWithSomeColour:

imageWithSomeColour = code to add some colour to image;

end

method colouriseImage:

colouriserClassInstance = Colouriser(imageWithSomeColour);

imageThatIsColourised = colouriserClassInstance.colouriseImage();

end

. . . ;

class Colouriser:

method colouriseImage:

Construct KD;

Construct T ;

for c = {r, g, b} do

Compute ac = (KD +δnI)−1 f̄ c;

Compute Tac;

Reshape Tac to an N ×M matrix Lc;

finalImagec = Lc;

end

return finalImage;

end

. . . ;

	Introduction
	Images

	Formulation of Problem
	Kernels

	Computational Solution
	Practical Implementation
	Numerical Constraints

	Results
	Dataset
	Optimisation
	Personal Extension

	Conclusions
	References
	Further Results
	Code

