Time Series Filtering

Zella Baig

Supervisors : Mohsin Javed (BlackRock) Yuji Nakatsukasa (University of Oxford)

Introduction 2

▶ Problem: We wish to extract some measure of "similarity" between stocks, but they are noisy. Can we seperate noise and signal?

▶ Useful in e.g. pairs trading.

▶ A possible solution: Singular Spectrum Analysis (SSA).

Consider¹ a time series $Z_T = (z_1, \ldots z_T)$. With fixed window length L and with $K := T - L + 1$:

1. Construct the (Hankel) trajectory matrix:

$$
\mathbf{X} := \begin{bmatrix} z_1 & z_2 & z_3 & \dots & z_K \\ z_2 & z_3 & z_4 & \dots & z_{K+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z_L & z_{L+1} & z_{L+2} & \dots & z_T \end{bmatrix}
$$
(1)

¹Hassani, Mahmoudvand, et al. [2011.](#page-19-0)

2. Compute SVD (via HMT algorithm) of X:

$$
\mathbf{X} = U\Sigma V^T = \sum_{i=1}^n u_i v_i^T \sigma_i
$$

3. Truncate the SVD to r rank-1 matrices, with rank r chosen s.t. $r \leq n$:

$$
\mathbf{X} \approx \mathcal{X} = \sum_{i=1}^{r} u_i v_i^T \sigma_i
$$

4. $\mathcal X$ is not necessarily Hankel, so re-diagonalise on the off-diagonals to reconstruct a de-noised series $\bar{Z}_T = (\bar{z}_1, \ldots \bar{z}_T)$ from the averaged Hankel matrix

$$
\mathbf{\bar{X}} := \begin{bmatrix} \bar{z}_1 & \bar{z}_2 & \bar{z}_3 & \dots & \bar{z}_K \\ \bar{z}_2 & \bar{z}_3 & \bar{z}_4 & \dots & \bar{z}_{K+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \bar{z}_L & \bar{z}_{L+1} & \bar{z}_{L+2} & \dots & \bar{z}_T \end{bmatrix}
$$

(2)

1. To set L, we first define the weighted inner product

$$
(Z_T, Y_T)_w := \sum_{i=1}^T \min\{i, L, T - i + 1\} z_i y_i \tag{3}
$$

with associated norm

$$
||Z_T||_w^2 := (Z_T, Z_T)_w.
$$

2. We then construct the w−correlation

$$
\rho_w(Z_T, Y_T) := \frac{(Z_T, Y_T)_w}{\|Z_T\|_w \|Y_T\|_w}
$$

which we use as a measure of seperability. It can be shown² that a choice of $L = \frac{T+1}{2}$ minimises ρ_w .

²Hassani, Kalantari, et al. [2017.](#page-19-1)

To choose r, examine the scree plot showing a knee at approximately 25 singular values.

We measure similarity of two time (de-noised) time series using the Time Warped Edit Distance³ (TWED). First define

$$
f(x_i, y_j) = |x_i - y_j|
$$

for two time series $X_T = (x_1, \ldots x_T)$ and $Y_T = (y_1, \ldots y_T)$ as a "difference measurement".

Next, we initialise a grid $D_{i,j}$ s.t.

$$
D_{0,0} = 0,
$$

\n
$$
D_{0,j} = \infty \quad j = 1,...T,
$$

\n
$$
D_{i,0} = \infty \quad i = 1,...T.
$$

Figure 1: Initialised TWED grid.

Then define the TWED-Closeness by $D_{T,T}$, where we construct

$$
D_{i,j} = \min \{ D_{i-1,j-1} + \Gamma_{X,Y}, D_{i-1,j} + \Gamma_X, D_{i,j-1} + \Gamma_Y \} \quad (4)
$$

for $1 \leq i, j \leq T$, where

$$
\Gamma_{X,Y} = f(x_i, y_j) + f(x_{i-1}, y_{j-1}) + 2\nu|i - j|,
$$
 (5)

$$
\Gamma_X = f(x_i, x_{i-1}) + \nu + \lambda,\tag{6}
$$

$$
\Gamma_Y = f(y_j, y_{j-1}) + \nu + \lambda,\tag{7}
$$

with

- \blacktriangleright λ : deletion penalty
- \triangleright *ν*: stiffness parameter

TWED: Graphical Example 12

Figure 2: Populated TWED grid, with $\nu = \lambda = 0.5$. $D_{T,T} = 16$.

Figure 3: Different rank SSA reconstructions. Note underfitting at $r = 5$, and overfitting at $r = 300$.

Current Results: TWED-Closeness Analysis ¹⁴

Figure 4: Returns over 50 days for the top 2 most "similar" stocks to MSFT. Note how when returns diverge, they eventually reconverge.

With *n* time series of length m , TWED-scoring complexity is $O(m^2n^2) \sim 12$ hours for 500 stocks over 5 years.

Current Results: Inter-Industry Similarity (Mean) ¹⁵

Key takeaways:

- \blacktriangleright Energy, Consumer Staples sector dissimilar to other sectors.
- \blacktriangleright Utilities, Finance, IT show strong intersimilarity.

Current Results: Inter-Industry Similarity (StDev) ¹⁶

Key takeaways:

- ▶ Energy sector conclusions strong.
- \blacktriangleright Utilities, Health Care conclusion very weak.

Current Results: Similarity Composition for JPM ¹⁷

▶ Neural-network based approaches

- ▶ There is promising work being done on *Siamese Neural* Networks⁴ , which use a pair of Recurrent Neural Networks that share weights to classify time series.
- ▶ Fine-tuning the choice of SSA parameters to better classify data

▶ Forecasting?

Thank you for listening!

Bibliography I 20

- (1) Dey, S.; Dutta, A.; Toledo, J. I.; Ghosh, S. K.; Llados, J.; Pal, U. SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification, Number: arXiv:1707.02131, 2017.
- (2) Ghodsi, M.; Hassani, H.; Rahmani, D.; Silva, E. S. Journal of Applied Statistics 2018, 45, Publisher: Taylor & Francis eprint: https://doi.org/10.1080/02664763.2017.1401050, 1872–1899.
- (3) Hassani, H.; Kalantari, M.; Yarmohammadi, M. Comptes Rendus Mathematique 2017, 355, 1026–1036.
- (4) Hassani, H.; Mahmoudvand, R.; Zokaei, M. Comptes Rendus Mathematique 2011, 349, 987–990.

- (5) Hou, L.; Jin, X.; Zhao, Z. In 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019, pp 1–6.
- (6) Marteau, P.-F. Time Warp Edit Distance, Number: arXiv:0802.3522, 2008.
- (7) Serrà, J.; Arcos, J. L. Knowledge-Based Systems 2014 , 67, 305–314.

Siamese Neural Networks ²²

Figure 5: Overview of an SNN, as used in SigNet⁵.

 5 Dey et al. [2017.](#page-19-2)

There exist two different types of SSA forecasting: recurrent, and vector. We go over them in turn:

1. Recurrent forecasting⁶ : Consider the left singular vectors $u_1, u_2, \ldots u_r$. Take their L^{th} components, denoted π_i , and define

$$
v^2 := \sum_{i=1}^r \pi_i^2.
$$
 (8)

Denote by \hat{u}_i , the $L - 1 \times 1$ vector which is u_i with the final component removed.

Then define

$$
A = (\alpha_{L-1}, \dots \alpha_1)^T = \frac{1}{1 - v^2} \sum_{i=1}^r \pi_i \hat{u}_i,
$$

and thus construct

$$
z_t = \begin{cases} \bar{z}_t & t = 1, \dots T, \\ \sum_{i=1}^{L-1} \alpha_i z_{t-i} & t = T+1, \dots T+h, \end{cases}
$$

for a forecast to h steps ahead.

SSA Forecasting: Vector Forecasting 25

2. Vector forecasting⁷ : First define

$$
\mathbf{\hat{U}} = [\hat{u}_1, \ldots \hat{u}_r],
$$

and construct

$$
\mathbf{\Pi} = \hat{\mathbf{U}}\hat{\mathbf{U}}^T + (1 - v^2) A A^T.
$$

Finally, construct the operator Θ s.t.

$$
\Theta V := \begin{bmatrix} \Pi \hat{V} \\ A^T \hat{V} \end{bmatrix},
$$

where \hat{V} denotes the vector V with the last element removed.

⁷Ghodsi et al. [2018.](#page-19-3)

Define now

$$
\Xi_i = \begin{cases} \mathcal{X}_i & i = 1, \dots K, \\ \Theta \Xi_{i-1} & i = K+1, \dots K+h+L-1, \end{cases}
$$

where \mathcal{X}_i are the columns of \mathcal{X}_i . Next construct

$$
\mathbf{\Xi} = \left[\Xi_1, \ldots \Xi_{K+h+L-1}\right],
$$

and hankelise to get the matrix $\bar{\Xi}$ from which we recover an "extended" time series containing forecasted values.

