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Introduction 2

▶ Problem: We wish to extract some measure of “similarity”
between stocks, but they are noisy. Can we seperate noise
and signal?
▶ Useful in e.g. pairs trading.

▶ A possible solution: Singular Spectrum Analysis (SSA).



Outline of SSA: Constructing the Hankel Matrix 3

Consider1 a time series ZT = (z1, . . . zT ). With fixed window
length L and with K := T − L+ 1:

1. Construct the (Hankel) trajectory matrix:

X :=


z1 z2 z3 . . . zK
z2 z3 z4 . . . zK+1
...

...
...

. . .
...

zL zL+1 zL+2 . . . zT

 (1)

1Hassani, Mahmoudvand, et al. 2011.



Outline of SSA: Taking a Low-Rank Approximation 4

2. Compute SVD (via HMT algorithm) of X:

X = UΣV T =

n∑
i=1

uiv
T
i σi

3. Truncate the SVD to r rank-1 matrices, with rank r chosen
s.t. r ≤ n:

X ≈ X =
r∑

i=1

uiv
T
i σi



Outline of SSA: Hankelising the Approximation 5

4. X is not necessarily Hankel, so re-diagonalise on the
off-diagonals to reconstruct a de-noised series
Z̄T = (z̄1, . . . z̄T ) from the averaged Hankel matrix

X̄ :=


z̄1 z̄2 z̄3 . . . z̄K
z̄2 z̄3 z̄4 . . . z̄K+1
...

...
...

. . .
...

z̄L z̄L+1 z̄L+2 . . . z̄T

 (2)



Choosing Parameters: Setting L 6

1. To set L, we first define the weighted inner product

(ZT , YT )w :=

T∑
i=1

min {i, L, T − i+ 1}ziyi (3)

with associated norm

∥ZT ∥2w := (ZT , ZT )w .



Choosing Parameters: Setting L 7

2. We then construct the w−correlation

ρw(ZT , YT ) :=
(ZT , YT )w

∥ZT ∥w∥YT ∥w

which we use as a measure of seperability.

It can be shown2 that a choice of L = T+1
2 minimises ρw.

2Hassani, Kalantari, et al. 2017.



Choosing Parameters: Setting r 8

To choose r, examine the scree plot showing a knee at
approximately 25 singular values.



TWED: Measuring Similarity 9

We measure similarity of two time (de-noised) time series using
the Time Warped Edit Distance3 (TWED). First define

f(xi, yj) = |xi − yj |

for two time series XT = (x1, . . . xT ) and YT = (y1, . . . yT ) as a
“difference measurement”.

3Marteau 2008.



TWED: Initialising the Grid 10

Next, we initialise a grid Di,j s.t.

D0,0 = 0,

D0,j = ∞ j = 1, . . . T,

Di,0 = ∞ i = 1, . . . T.
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Figure 1: Initialised TWED grid.



TWED: Populating the Grid 11

Then define the TWED-Closeness by DT,T , where we construct

Di,j = min {Di−1,j−1 + ΓX,Y , Di−1,j + ΓX , Di,j−1 + ΓY } (4)

for 1 ≤ i, j ≤ T , where

ΓX,Y = f (xi, yj) + f (xi−1, yj−1) + 2ν|i− j|, (5)

ΓX = f (xi, xi−1) + ν + λ, (6)

ΓY = f (yj , yj−1) + ν + λ, (7)

with

▶ λ: deletion penalty

▶ ν: stiffness parameter



TWED: Graphical Example 12
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Figure 2: Populated TWED grid, with ν = λ = 0.5. DT,T = 16.



Current Results: SSA Reconstruction 13

Figure 3: Different rank SSA reconstructions. Note underfitting at
r = 5, and overfitting at r = 300.



Current Results: TWED-Closeness Analysis 14

Figure 4: Returns over 50 days for the top 2 most “similar” stocks to
MSFT. Note how when returns diverge, they eventually reconverge.

With n time series of length m, TWED-scoring complexity is
O(m2n2) ∼ 12 hours for 500 stocks over 5 years.



Current Results: Inter-Industry Similarity (Mean) 15

Key takeaways:

▶ Energy,
Consumer
Staples sector
dissimilar to
other sectors.

▶ Utilities,
Finance, IT
show strong
inter-
similarity.



Current Results: Inter-Industry Similarity (StDev) 16

Key takeaways:

▶ Energy sector
conclusions
strong.

▶ Utilities,
Health Care
conclusion
very weak.



Current Results: Similarity Composition for JPM 17



Avenues for Future Work 18

▶ Neural-network based approaches
▶ There is promising work being done on Siamese Neural

Networks4, which use a pair of Recurrent Neural Networks
that share weights to classify time series.

▶ Fine-tuning the choice of SSA parameters to better classify
data

▶ Forecasting?

4Hou et al. 2019.



Thank you
for listening!
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Siamese Neural Networks 22

Figure 5: Overview of an SNN, as used in SigNet5.

5Dey et al. 2017.



SSA Forecasting: Recurrent Forecasting 23

There exist two different types of SSA forecasting: recurrent,
and vector. We go over them in turn:

1. Recurrent forecasting6: Consider the left singular vectors
u1, u2, . . . ur. Take their Lth components, denoted πi, and
define

v2 :=

r∑
i=1

π2
i . (8)

Denote by ûi the L− 1× 1 vector which is ui with the final
component removed.

6Ghodsi et al. 2018.



SSA Forecasting: Recurrent Forecasting 24

Then define

A = (αL−1, . . . α1)
T =

1

1− v2

r∑
i=1

πiûi,

and thus construct

zt =


z̄t t = 1, . . . T,

L−1∑
i=1

αizt−i t = T + 1, . . . T + h,

for a forecast to h steps ahead.



SSA Forecasting: Vector Forecasting 25

2. Vector forecasting7: First define

Û = [û1, . . . ûr] ,

and construct

Π = ÛÛT +
(
1− v2

)
AAT .

Finally, construct the operator Θ s.t.

ΘV :=

[
ΠV̂

AT V̂

]
,

where V̂ denotes the vector V with the last element
removed.

7Ghodsi et al. 2018.



SSA Forecasting: Vector Forecasting 26

Define now

Ξi =

{
Xi i = 1, . . .K,

ΘΞi−1 i = K + 1, . . .K + h+ L− 1,

where Xi are the columns of X . Next construct

Ξ = [Ξ1, . . .ΞK+h+L−1] ,

and hankelise to get the matrix Ξ̄ from which we recover an
“extended” time series containing forecasted values.
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