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Introduction

1 Introduction

Time series analysis arises in a wide array of contexts - from meteorology to speech

recognition. A natural problem which arises in many of these use cases is in the exami-

nation and classification of similarity, or the question of analysing when two different

time series can be quantifiably classed as being “similar” in the colloquial sense.

We are specifically, in this thesis, interested in the analysis of time series in financial

contexts. We demonstrate this with an illustrative example. Consider two stocks which

we expect to be similar due to perhaps operating in the same sector and having a

similar userbase, or facing similar supply chain challenges. An example of this might be

Lockheed Martin and Northrop Grumman, which we represent with the stock tickers

LMT and NOC respectively1. Both these companies operate in the aerospace and defence

sector, and as such we expect them to perform relatively similarly. Indeed, if we plot

the returns of these over 180 trading days in Figure 1, we can see that their returns are

incredibly similar over the time period plotted.

Figure 1: LMT and NOC returns over 180 trading days.

An interesting scenario now is to consider the prices for these two stocks, which we

present in Figure 2. Notice how there are periods where the prices remain quite similar

to one another, then diverge, and then eventually converge again. This behaviour is

expected, assuming the underlying trends governing the price behaviour of these tickers

is similar (which, as mentioned before, we expect it to be).

1Henceforth, we use the word “ticker” to denote the initialism used to represent a given company on

stock exchanges. For example, the ticker V corresponds to the company Visa.
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Introduction

Figure 2: LMT and NOC price over one year.

If the trends governing these tickers are very similar, then the periods in which the

prices diverge present an opportunity to extract value. For example, assuming we know

a priori that these two tickers are similar, we wait for a divergent period when the values

of these series begin to differ significantly. We then short the more expensive stock,

and buy more of the cheaper stock, such that we may extract profit from their eventual

reconvergence. Such trading strategies are known as “pairs trading” strategies, and can

be applied to other tickers which are similar, such as Pepsi and Coca-Cola.

A subsequent issue which thus arises is of dealing with noise within data. Time

series (and particularly so in financial contexts) often present themselves inclusive of

a large amount of noisy movements, whereby “noise” we refer to short term, erratic

fluctuations in values. Constructing a similarity measure of this noisy data is likely to

lead to noisy results (giving no useful information), or even worse lead to incorrect

conclusions drawn 2. We therefore seek some method to incorporate noise reduction

(or ideally, elimination) into our time series signals by extracting the useful information

and discarding the useless fluctuations. This may alternatively be conceptualised as

extracting the trend from a time series: the underlying signal which dominates the

fluctuations in value.

To sum, the mathematical challenge in this case is twofold:

1. The overarching problem is to figure out a way to discern what time series similarity

entails in a rigorous sense,

2. But this comes with the added sub-problem to tackle first in which time series

2See the common saying in computing: garbage in, garbage out.
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Introduction

data, particularly stock data, is often contaminated by noise and so we seek to

extract the underlying trend from the time series.

To solve the second issue, we employ Singular Spectrum Analysis (SSA), a common

method in time series analysis used to extract the “signal” from “noise” in a time series

(Hamilton 1994). We examine this choice of technique, and outline why we employ it

versus other common methods to de-noise time series data. With these “de-noised” time

series, we will then be able to tackle the issue of constructing some similarity measure

of the underlying signals. We provide an examination of several standard methods in

time series analysis, and discuss why we prefer the Time Warp Edit Distance (TWED),

discussing its performance against other metrics such as the Euclidean Distance.

In particular, our discussion presents the most recent analysis of SSA on stock

data utilising recent similarity measures, and further presents a novel comprehensive

discussion of the linear algebraic theory arising in these contexts (which often appears

to be missing from literature). Further, we provide new insight into the behaviour of

these de-noised time series, which to our knowledge has not been connected to long-

term financial data sets before; we also are able to provide new examination of the

relationships between the structure of the underlying signals of the time series and the

singular value distributions which arise from the construction of the trajectory matrices

via SSA. Lastly, many of the methods and analyses presented in this thesis are still readily

applicable to other scenarios, and we hope this leads to several potential future avenues

for exploration.

The layout of this thesis is as follows. We proceed first in Section 2 with a discussion

of the literature within the field, and give an overview of our novel contributions. We

proceed to reviewing the data set which we use for our analysis in Section 3, and then in

Section 4 we discuss Singular Spectrum Analysis as well as our motivation for choosing

this specific method for our use case. We move next to Section 5 where we discuss

measuring similarity for time series, and then in Section 6 we discuss how to decide

when two time series are dissimilar. We then turn to discussing how exactly we score

similarity of multiple time series in Section 7, and present our results in Section 8. Lastly,

we provide our conclusions in Section 9, where we finish via briefly discussing future

avenues for work and questions to tackle.
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2 Literature Review & Novel Contributions

Though much of the analysis on SSA has come about in the past decade, the modern

methodology traces its roots via “caterpillar SSA” arising from Russian institutes in

the 90s and discussed in texts such as in (V. N. Zhigljavsky and Anatoly A. 2001). In

more recent years however, there has been work done on analysis of optimisation of

parameters, such as in (Golyandina 2011; R. Wang et al. 2015), and novel ideas for

the choice of these parameters have also been discussed such as via entropy-based

approaches in (Khan and Hassani 2019). Our discussion on SSA attempts to provide

further insight into the choice of one of the two parameters associated with SSA, the

truncation rank r, via an analysis of the convergence to optimal results provided a set of

synthetic data. Note however that this is not the primary aim of our examination of SSA

and as such we leave further exploration for future work.

We also provide further insight into the analysis of the singular values associated with

the matrices employed within SSA, both in terms of their empirical distributions (carrying

on work as done in (Mahmoudvand and Zokaei 2011)), and particularly draw links

between the work done linking SSA to Fourier mode analysis (as brought up theoretically

(Guo et al. 2020; X. Zhao and Ye 2019)) to our financial context. In particular, the

examination of these links helps to outline effects arising from market-level economic

forces, and how they influence the distributions of the singular values associated with

the matrices employed within SSA.

Links between SSA and machine learning approaches have also begun to be explored

such as in (Hou, Jin, and Z. Zhao 2019; Grabocka and Schmidt-Thieme 2018), though

contributions to this area have not thus far drawn much attention (though have shown

promising results, for example, in forecasting).

There has also been increasing attention drawn not just to SSA in a vacuum, but in

examining the ramifications of the method in specific context, such as looking at tourism

trends in (Hassani, Webster, et al. 2015), image processing in (Rodríguez-Aragón and

A. Zhigljavsky 2010), and specifically for financial data in (Hassani and Thomakos

2010). However, our discussion is thus far both the widest ranging contextually (such

as in examination of sector-level information) but also the most in-depth in terms of

answering the question of how to go about picking similar time series from a (large) set

of very noisy data, constructed over a period of several years.

We also briefly delve into the examination of related techniques such as in Proper

Orthogonal Decomposition (Frame and Towne 2022; Weiss 2019), and demonstrate the

application of linked techniques to improve computational performance of “standard”
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SSA.

Lastly, in SSA, we (with much support from Professor Yuji Nakatsukasa) provide

further exploration in the links between low-rank functions, the Hankelised matrices they

form, and their Chebyshev expansions - with the novel experimental results presented

in Section 8.1 providing clear avenues for further exploration.

Within time series the standard method for similarity analysis appears to be Dynamic

Time Warping, known as an “elastic” measure due to its ability to account for lead-lag

effects (Goldstein 2015; Zha et al. 2022). However, we examine various discussions of

the choice of both the similarity measures used (showcasing their benefits and drawbacks

as in (Serrà and Arcos 2014; Vlachos 2017; X. Wang et al. 2010)), as well as the pre-

processing required in these contexts as done in (Rakthanmanon et al. 2013; Elzinga and

Studer 2019; Hassani, Yeganegi, et al. 2020); we also incorporate information specific

to financial data as in (Lütkepohl and Xu 2012) showcasing the necessity of appropriate

preprocessing.

Lastly, we bring up an important distinction which appears to be missing in almost all

of the time series similarity analysis which we have seen: that the notions of “similarity”

and “distance”, while closely linked, are not precisely inverse to one another (as they

are treated in the bulk of the literature). This concept has been discussed primarily

sequence processing such as in text analysis as in (Elzinga 2014), but drawing on insights

discussing the relationships between these two closely related concepts (as in (Chen,

ma, and Zhang 2009; Emms and Franco-Penya 2013)) we are able to show that indeed

the precise definition of similarity employed does matter in time series processing (and

when it might not).

Having discussed the background for our work, we turn first towards analysing the

data set that we utilise in our discussion.
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3 Data Set

We have built a webscraper which parses five years worth of data (or 1258 entries)

from Yahoo Finance (Yahoo Finance – stock market live, quotes, business & finance news

2023) from the S&P 500, a collection of the five hundred largest tickers listed within

the United States. Once collecting the data over from 2015 to 2020, we then remove

any tickers which did not exist within the S&P 500 for the entirety of this range due to

acquisitions or market capitalisation changes. This left us with 477 tickers to work with

for this five year span. Note that we then also parsed information about each of these

tickers’ GICS sectors (of which there are 11) and sub-sectors (of which there are 163);

these GICS labels being standard independent labels applied to stock tickers pertaining

to the specific sector a ticker operates in, to four levels of specificity (GICS® - Global

Industry Classification Standard 2023).

We also note that it is discussed in, for example, (Keogh and Kasetty 2003) and

(Rakthanmanon et al. 2013) that normalisation is needed when discussing time series

data in order to draw meaningful comparisons; financially it is also standard practice to

do so to attempt to get variables on similar scales. We see in (Hassani, Yeganegi, et al.

2020) that in time series forecasting Z-normalisation (subtracting the mean and dividing

by the standard deviation) slightly outperforms log normalisation (another de-facto

standard in financial data); the results are not conclusive by any means and furthermore

there does not appear to be a set method for data normalisation when considering time

series. We opt for Z-normalisation due to the ability to set variables to a similar scale

regardless of initial values such that we have a set “domain” within which to examine

similarity, as opposed to trying to examine values which are both very large and very

small (note that log normalisation rectifies this issue somewhat, but does not fully solve

it given our data set includes tickers with both extremely high and fairly low prices).

Having discussed the data which we use, we now look at the mathematical back-

ground for the work we undertake.
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4 De-Noising & Extracting Trends from Data

4.1 Singular Spectrum Analysis

Before delving into the mathematical techniques used in the extraction of trends for our

time series, let us first define the notion of a time series precisely.

Definition 1 (Time Series). A time series ZT is a set of T ordered points z1, z2, . . . zT , each

associated with some given measurement.

This definition then provides us with the groundwork upon which to then analyse

our forthcoming methodologies. However, before turning towards our examination

of Singular Spectrum Analysis, we introduce the tools which we need to perform this

analysis.

4.1.1 Prerequisite Linear Algebra

Starting with a review of some tools from linear algebra, we first define define Hankel

matrices, which we use later on in the SSA method.

Definition 2 (Hankel Matrices). An m× n Hankel matrix is a matrix that has the same

values on the off-diagonals, i.e. of the form












z1 z2 z3 . . . zn

z2 z3 z4 . . . zn+1
...

...
... . . . ...

zm zm+1 zm+2 . . . zm+n−1













for entries {zi}
m+n−1
i=1 .

Next, we discuss the singular value decomposition of a matrix, a decomposition heavily

employed in signal processing and further contexts.

Definition 3 (Singular Value Decomposition (Nakatsukasa 2023)). Given any matrix

A∈ Rm×n for m≥ n3, we may decompose A into the product of three different matrices,

A= UΣV T ,

where U ∈ Rm×n is orthonormal (U T U = In), V ∈ Rn×n is orthogonal (V T V = V V T = In),

and Σ ∈ Rn×n = diag {σ1, . . . ,σn}, with σi ≤ σ j if i ≤ j.

Here, the columns of U are called the left singular vectors, the columns of V are called

the right singular vectors, and the values σi are called the singular values.
3A straightforward analogue exists for the case where m< n by considering AT .
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4.1 Singular Spectrum Analysis

Proof. For any such matrix A, construct the Gram matrix AT A, which has the decomposi-

tion

AT A= VΛV T , (1)

where the matrix Λ is the (diagonal) matrix of eigenvalues λi of AT A. Importantly, AT A

is symmetric and so the matrix Λ is non-negative, and therefore we may rearrange (1)

by

V T AT AV = Λ := Σ2, (2)

making σi :=
p

λi. From (2), we may then right- and left-multiply by Σ−1 to arrive at

(Σ−1V T AT )(AVΣ−1) := In, (3)

where the bracketed terms in (3) we define as the matrix U .

A more relevant form we may write the SVD in is via

UΣV T :=
n
∑

i=1

σi(ui v
T
i ), (4)

where ui and vi are the left and right singular vectors respectively. Importantly, note

that the sum in (4) is a sum of n rank-1 matrices, each of the dimension m× n. Given

the guarantee of its existence (Nakatsukasa 2023), the SVD has been often used as

a measurement of the “information” contained within a given matrix, for example in

low-rank approximations. This is done by simply “cutting off” the singular values at

some chosen rank r; in the form of (4) this is simply equivalent to truncating the sum at

i = r.

While there exist many standard in-built libraries to compute the SVD within Python,

we make a note that these methodologies might prove too costly for both our data

set, and future consideration of larger data sets as well, owing to the O(mn min{m, n})
cost of calculation on a matrix of size m × n. We thus turn to randomised methods,

using a self-coded implementation of an existing algorithm. Randomised methods have

proven to be both incredibly popular and effective in the field of data science, with

large speed increases in algorithms at the cost of relatively small errors: we believe the

performance increases we attain using these methods to be worth implementing them

for our purposes.

Definition 4 (Rangefinder Algorithm (Halko, Martinsson, and Tropp 2011)). Suppose

we wish to find the rank-r approximation (Â) of a matrix A∈ Rm×n. To do so, we follow

the procedure outlined in Pseudocode 1, as follows.
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4.1 Singular Spectrum Analysis

Pseudocode 1: Rangefinder SVD

def Rangefinder(A∈ Rm×n):

G = gaussian(m,n) ; # G ∈ Rm×n with Gi, j ∼ N(0,1)

B = AG;

Q, R = qr(B) ; # QR factorisation of B, with Q ∈ Rm×r

Â=QQT A ; # Construct low-rank approximant of A

return Â;

We can see that QQT A is the low-rank approximant by first considering the matrix

C := QT A ∈ Rr×n, and then computing the singular value decomposition C = ŪΣr V
T ,

which is rank-r. We then form U := QŪ ∈ Rm×r , and so QQT A = QC = QŪΣr V
T =

UΣr V
T .

Now, starting with a noisy time series ZT , we first define the window length L and

thus the corresponding variable K := T − L + 1. We are now in a place to construct an

outline for SSA. We then form the associated (Hankel) trajectory matrix

X :=













z1 z2 z3 . . . zK

z2 z3 z4 . . . zK+1
...

...
...

. . .
...

zL zL+1 zL+2 . . . zT













,

which can be either “tall” or “wide”, depending on the choice of the window length

(which sets the height of the matrix) and the length of the time series T .

We pause to discuss the intuition behind Hankel matrices. Each of the columns in the

Hankel matrix is simply the preceding column “rolled” back by one: discarding the oldest

observation and adding the newest observation. This type of structure is commonly

referred to as in literature as time-delay embedding (Frame and Towne 2022), with the

delay in the Hankel matrix case being a single observation. In this sense, the columns

can be thought to represent a set of vectors in time-space, each corresponding to a single

set of observations (and thus the singular values correspond to information contained

contained in the time-space spanned by the columns of the trajectory matrix, or in other

words the trends which are present across the span of the time-delayed column vectors).

We then compute the SVD of the matrix X, which we represent as a sum of rank-1

matrices:

X=
L
∑

i=1

σi(ui v
T
i ). (5)

We now truncate the sum in (5) to some chosen rank r, with r ≤ L. Our motivation is

such:
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4.1 Singular Spectrum Analysis

1. We know that the initial signal ZT may be written as the sum of a “pure” signal,

which we denote by ST , and noise, which we denote by NT .

2. We also expect that the pure signal is of greater magnitude than the noise (i.e.

that the signal dominates the noise component).

3. Therefore, in an ideal scenario we would be able to label the largest r singular

values as corresponding solely to the signal and the rest of the singular values

as corresponding to noise. In this sense, the “truncated” SVD that we work with

is indeed an approximation to the overall signal, but can also be thought of as

providing a more accurate representation of the underlying time series dynamics.

Thus, let us denote this truncated SVD by

X :=
r
∑

i=1

σi(ui v
T
i ). (6)

Note that the matrixX in (6) is not necessarily Hankel; this is a non-ideal situation simply

due to the fact that we have already used a one-to-one mapping of a time series and a

Hankel matrix in the construction of the initial trajectory matrix X. Thus, we perform a

re-Hankelisation procedure on X (by taking the mean of every off-diagonal, and resetting

all values on that off-diagonal to the mean) to then generate a “reconstructed” trajectory

matrix X̄ (with corresponding reconstructed series Z̄T ),

X̄ :=













z̄1 z̄2 z̄3 . . . z̄K

z̄2 z̄3 z̄4 . . . z̄K+1
...

...
...

. . .
...

z̄L z̄L+1 z̄L+2 . . . z̄T













.

We may also explore the connections this truncation has to image approximations,

another field truncated SVDs have historically shown to be useful in. For example,

consider Figure 3, where we present the initial rank-240 trajectory matrix formed from

a sinusoidal signal with added Gaussian noise, as well as the rank-25 reconstruction

formed via truncation and re-Hankelisation. Note in particular that with a large reduction

in rank, we are able to remove most of the “noise” present in the data but retain the

bulk of the underlying signal.

In fact, however, we do not need to reconstruct the entire Hankel matrix X̄, and
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4.1 Singular Spectrum Analysis

Figure 3: Trajectory matrix for AAPL price over five years (2015 to 2020), alongside its

rank-25 SSA reconstruction.

instead we may compute the elements of the reconstructed series directly via

z̄p =







































1
p

p
∑

i=1

Xi,p−i+1 1≤ p ≤ L,

1
L

L
∑

i=1

Xi,p−i+1 L < p < K ,

1
T − p+ 1

L
∑

i=T−K+1

Xi,p−i+1 K ≤ p ≤ T.

In an ideal situation, the parameters L and r would have been set such that our recon-

struction Z̄T has as little noise as possible; we now turn to discussing the choice of these

parameters.

4.1.2 Choice of Parameters

Note that we have two parameters to set within the SSA procedure: the window length

L, as well as the rank of the truncation r. We focus first on the choice of L, and then

turn to choosing the latter.

The standard methodology used to discuss the choice of window length is the notion

of separability. Intuitively, we may think of this concept as pertaining to whether, for a

given composite signal C = A+B with sub-signals A, B we can “separate” the two signals

from one another. This relates directly to SSA in which ideally, we wish to separate the
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4.1 Singular Spectrum Analysis

noise from signal within our time series. To quantify the notion of separability, we first

define the weighted inner product (V. N. Zhigljavsky and Anatoly A. 2001) for two time

series ZT and YT (and with fixed L) as

(ZT , YT )w :=
T
∑

i=1

min {i, L, T − i + 1}zi yi, (7)

which has the associated norm

∥ZT∥
2
w := (ZT , ZT )w .

Note in particular that the highlighted term in (7) (henceforth referred to as wL
i in

shorthand) is simply the amount of times that the ith time observation of a time series

of length T would appear when embedded into a trajectory matrix of window length L;

this weight can thus be loosely thought of as a weight in “temporal” space. With this,

we then define the weighted-correlation (V. N. Zhigljavsky and Anatoly A. 2001), or in

other words the w-correlation as

ρw(ZT , YT ) :=
(ZT , YT )w
∥ZT∥w∥YT∥w

, (8)

where a ρw value of zero implies w-orthogonality (or complete separation), and a value

of one implies that both signals ZT , YT are w-parallel, or completely “mixed”. We thus

seek the value of L which minimises (8). In what follows, we follow a similar procedure

as in (Hassani, Mahmoudvand, and Zokaei 2011) in order to show that the optimal

window length to choose is L := T+1
2 for a time series of length T . However, before we

proceed to constructing our main proof, we first prove several lemmas which we employ

as part of the overarching proof.

Lemma 1 (Restriction of w-correlation domain (Hassani, Mahmoudvand, and Zokaei

2011)). Consider a time series ZT = ST + NT , where ST is the signal and NT is the noise.

Define XL and XK as the trajectory matrices formed with window lengths L and K of the

time series ZT , the associated reconstructed series S̄T (L), S̄T (K), and the associated noise

components N̄T (L), N̄T (K), defined by N̄T (L) = ZT − S̄T (L).

We then have that S̄T (L) = S̄T (K) and N̄T (L) = N̄T (K), and so ρw(S̄T (L), N̄T (L)) =

ρw(S̄T (K), N̄T (K)), meaning that we only consider window sizes L ∈ [2, T+1
2 ].

Proof. Note that XL = (XK )T via the definition K = T − L + 1, from which the results

follow directly.

Lemma 2 (Trace of product of reconstructed matrices (Hassani, Mahmoudvand, and

Zokaei 2011)). With X as the L × K trajectory matrix for a time series ZT for K =
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4.1 Singular Spectrum Analysis

T − L + 1 and L ∈ [2, T+1
2 ], define X = S + N = S̄ + N̄, with S the rank-r component

of X corresponding to signal, N corresponding to noise, and the barred components the

corresponding reconstructions made during the SSA procedure (following directly from

Lemma 1). We then have that t r(SN̄ T ; L) > 0, where t r(A; L) denotes the trace of an

L × K matrix A.

Proof. First define the operator t rT (X ; L) := t r(XX T ; L). Now note that

t rT (S+ N; L) = t rT

�

S̄+ N̄; L
�

(9)

since the arguments on both sides is simply X . Next, by expanding both sides of (9)

explicitly and rearranging, we have

t r
�

S̄N̄ T ; L
�

=
1
2

�

t r
�

SST ; L
�

− t r
�

S̄S̄T ; L
�

+ t r
�

NN T ; L
�

− t r
�

N̄ N̄ T ; L
��

. (10)

Now, consider t r(SS̄T ; L), which we expand as

t r(SS̄; L) =
T+1
∑

i=1

i1
∑

j=i0

si,i− j s̄i,i− j =
T+1
∑

i=1

i1
∑

j=i0

si,i− j s̄i =
T+1
∑

i=1

wL
i−1s̄2

i = t r
�

S̄S̄T ; L
�

, (11)

again using the weight from (7) in our expression. Using the results of (11), we note

that

t rT

�

S− S̄; L
�

= t r
�

SST ; L
�

− t r
�

S̄S̄T ; L
�

, (12)

where the left hand side is positive, and therefore so is the right hand side. We can

repeat this analysis for N and N̄ to thus show that the right hand side of (10) is positive,

completing the proof.

Lemma 3 (t rT (S̄; L) an increasing function (Hassani, Mahmoudvand, and Zokaei 2011)).

t rT (S̄; L) is an increasing function of L for L ∈ [2, T+1
2 ], provided there exists a Hankel

matrix H ∈ CL×K such that

t rT (S−H; L)≤ t rT (S̄; L)− t rT (S̄; L − i) (13)

for i ∈ [1, L − 2].

Proof. Recall expression (12). Note by definition of t rT (A; L) for a Hankel matrix A that

t rT (S − S̄; L) ≤ t rT (S − A; L) for all Hankel A ∈ CL×K . Assuming now that we have a

matrix H which satisfies (13), it follows immediately that

t rT (S; L)− t rT (S̄; L)≤ t rT (S−H; L)≤ t rT (S̄; L)− t rT (S̄; L − i),

and so we have completed the proof.
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4.1 Singular Spectrum Analysis

With this work, we are now able to prove Theorem 1.

Theorem 1 (Optimal window length for SSA, adapted from (Hassani, Mahmoudvand,

and Zokaei 2011)). Consider a time series ZT (with corresponding L× K trajectory matrix

X , for K = T − L + 1), comprised of the sum of the signal series ST and noise series NT

(and which may also be written as the sum of the reconstructed series ZT = S̄T + N̄T ). We

then may construct the corresponding signal matrix S, the reconstructed signal matrix S̄,

the noise matrix N, and reconstructed noise matrix N̄.

Then, the choice of window length L which minimises the w-correlation between ST and

NT is T+1
2 , provided that there exists a Hankel matrix H such that

t rT (S−H; L)≤ t rT (S̄; L − i)− t rT (S̄; L − i) (14)

for i ∈ [1, L − 2].

Proof. Consider the outline of the proof of Lemma 3. Apply the same procedure to

demonstrate that t rT (S − S̄; L) is a decreasing function of L, attaining a minimum at

L = T+1
2 , provided there exists a Hankel matrix H which satisfies (14). Repeat this

procedure to show that t rT (N − N̄; L) is a decreasing function of L as well. Finally,

recalling Expression (10), note that the right hand side is a decreasing function of L and

thus that t r(S̄N̄ T ; L) is a decreasing function of L; noting in particular that

t r(S̄N̄ T ; L) =
L
∑

i=1

K
∑

j=1

(S̄)i, j(N̄)i, j =
T
∑

i=1

wL
i (S̄T )i(N̄T )i = (S̄T , N̄T )w,

thereby completing the proof

Using this result, we henceforth set the window length to T+1
2 unless we state

otherwise.

Choosing the rank of truncation r is more difficult. While there have been attempts

such as in (Khan and Hassani 2019) to choose optimal parameters for r, there has yet

to have been consensus on a tried-and-true method which gives a reliable extraction of

the dominant underlying signals.

We turn instead to an approach more based upon the specific data set we have,

rather than one more generally applicable: via an examination of the scree plot of

singular values of the trajectory matrices corresponding to all the time series in our data

set. Whilst we note that such an approach may be suboptimal, nevertheless it is highly

adaptable to other contexts and further (as we shall see further on) provides reasonably

good results in terms of de-noising our time series.
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4.2 Market Connections within SSA

Consider the scree plot in Figure 4. Clearly, the first few singular values tend to

account for the bulk of the information within these matrices, and so we set a (somewhat

arbitrary) threshold of r = 25 as our rank of SSA truncation.

Figure 4: Scree plot of all singular values for tickers’ trajectory matrices.

The overall shape of the singular value distribution also appears to be interesting

in that after the first few very large singular values, there appears to be a large region

wherein the singular values slowly decay, and we ultimately then arrive at a steep drop

off at the very tail of the singular value distribution. We attempt to make experimentally-

backed claims linking the shape of this distribution to connections to market forces

in the following section. This also presents clear avenues for future work, namely in

theoretically backing our conclusions up further.

4.2 Market Connections within SSA

Looking at the time series in our data set, we observe that they largely display the same

overall shape since each stock is affected by the overall market. We claim that the first

few large singular values correspond to these major market sentiments, which then

helps to explain why these singular values are so much larger than the others (as market

movements on average will dominate any day-to-day fluctuations in individual price for

any ticker). We justify these thoughts as follows.

We first define by “band width” the value w̃i :=max {s̃i} −min {s̃i}, where s̃i is the

reconstructed time series associated with the ith singular value, i.e. s̃i ∼ σi(ui v
T
i ). In

this sense, the band width is an indication of the magnitude of movements associated

with the ith singular value.
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4.2 Market Connections within SSA

We can now consider a plot of the band width against the index of the corresponding

singular value, as presented in Figure 5.

Figure 5: Comparison of “band width” of SSA reconstructions.

We see here that w̃i drops off sharply after the first few singular values for our data

set; this demonstrates that the first few singular values are the ones which contribute

most to the fluctuations in price for our tickers, making it likely that these first few

singular values correspond to dominant trends which are seen regardless of sector or

even ticker.

We can also demonstrate this more concretely with a specific example. Consider

Figure 6, where we plot two different (rank zero and rank five) SSA components for

TSLA.

(a) Rank 0 SSA component of TSLA reconstruction. (b) Rank 5 SSA component of TSLA reconstruction.

Figure 6: Comparison of SSA components of different ranks for TSLA.

Notice how the oscillations in Figure 6(a) are far larger than those of Figure 6(b),
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4.2 Market Connections within SSA

in accordance with our preceding discussion4. We can also consider the effect of these

individual rank components on the overall reconstruction further in Figure 23 given in

Appendix A, which plots both these series for three increasing ranks on TSLA price.

We pause to introduce the notion of Fourier frequencies. The Fourier transform is

a commonly used method to link time and frequency space by transforming between

the two. Such analyses are popular particularly in signal processing, but we wish to

introduce this concept to help further explain our market connections. Intuitively, we

expect that market movements are in general seen at a much longer scale than any noisy

movements, and so they should be associated with smaller frequencies within any signal.

To quantify the proceeding analysis, suppose we have a signal f (t) with period T .

Using the representation of sinusoids as complex exponentials., we can represent this

signal5 as a sum of complex exponentials

f (t) =
∞
∑

n=−∞

αn exp
§

2πnt j
T

ª

,

for αn complex constants and j the imaginary unit. To determine the values αn associated

with a frequency n/T , we compute the integral

αn =
1
T

∫

T

f (t)exp
§

−
2πnt j

T

ª

d t. (15)

Thus, by sampling discrete observations of a signal f0, . . . fN−1, we can then construct

the Discrete Fourier Transform signal F0, . . . FN−1 by discretising (15) via

Fm =
N−1
∑

n=0

fn exp
§

−
2πnmj

N

ª

,

with the values (Fm)2 representing the power spectrum of our signal (thus leading

directly to the associated frequencies).

We may examine the dominant Fourier frequencies for the SSA reconstructions at

a given rank in our data, which we present in Figure 7. Note here that the dominant

frequency associated with s̃i is a strictly increasing function with index i. This is notewor-

thy particularly as this demonstrates that the first few singular values are also the ones

corresponding to the slowest varying fluctuations within the SSA reconstruction. This is

precisely the behaviour that we expect to see if our hypothesis is true, given that market

forces vary slower than any individual ticker’s values. We may also independently arrive

at these conclusions by considering related work done in (X. Zhao and Ye 2019), wherein

4Note that we index from zero.
5Noting that we simply perform a sinusoidal expansion of our initial signal.
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4.2 Market Connections within SSA

they demonstrate that higher amplitudes of frequencies correspond to larger singular

values.

Figure 7: Comparison of DFT frequency plots for all tickers in data set.

Indeed, we may utilise this result as well as their Figure 8 (comparing energies

against frequencies) and present them in our Figure 8.

(a) Frequency spectrum amplitudes for all tickers. (b) Singular value energies against frequencies

(modification of Figure 8 in (X. Zhao and Ye 2019)

to our data set).

Figure 8: Comparison of frequencies and singular value energies for all tickers.

Here, we demonstrate that for all tickers the slowest varying frequencies are the

ones that arise the strongest when we consider frequency space of the signals, and also

that the singular value energies (i.e. sums of pairs6 of squared singular values) are

a decreasing function of frequency. This means that as our singular values drop off,

6One of the results discussed in (X. Zhao and Ye 2019) is that a single frequency mode corresponds to

two singular values for a given Hankelised signal.
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we are able to conclusively link them to faster oscillations in our SSA reconstructions;

we claim that it is thus natural that these correspond to the fast random movements

in price inherent to price time series. In this sense the SSA procedure in our context

can be seen as an analogue of a low-pass filter, wherein we keep the low frequency

“useful” signals and discard the higher frequencies. Note again, however, that this is

a relatively empirical examination of this phenomenon (though we believe we have

presented a strong argument for why it should be true) and so there is an avenue for

future exploration in rigorously proving these results.

4.3 On the Choice of SSA

A natural question which might arise at this point is to discuss why we have chosen to

proceed with SSA-based approaches, as opposed to other de-noising techniques (such

as regression-based approaches, or via principal component analysis). The primary

advantages are twofold.

1. First, SSA as a technique is not very dependent on assumptions on the underlying

data. There is no requirement for stationary data7, nor for the behaviour of

the time series at extrapolated points. This, combined with the need for only

two parameters (the window length and the rank of truncation) makes it quite

appealing in terms of simplicity and efficacy to implement.

2. Secondly, primarily contrasting with PCA, is that SSA enables the examination

of temporal information via the structure of the Hankel matrix X, allowing the

splitting of the signal into oscillatory and trend components; PCA on the other

hand does not include this structure within the construction of its data matrix,

and so is only able to extract the subspace with the highest variance; there is no

inherent temporal information embedded into this space.

Having discussed our choice for de-noising time series, we now turn towards discussing

a modification of SSA which presents interesting theoretical results and may be of

use towards other contexts as well, via insight gathered from analysis of the Proper

Orthogonal Decomposition.

7Stationary processes have constant means and variances in time (Hamilton 1994).
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4.4 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a technique most commonly discussed

in fluid flows which contains many similarities to SSA8. The basic outline of POD consists

of writing the vector field of flows φ(x⃗ , t) as a sum over the individual modes of flows,

φ(x⃗ , t) =
r
∑

i=1

ψi(x⃗ )αi(t). (16)

In the general case, we then proceed to take n snapshots at m different time values over

the field with each snapshot denoted φ(x i, t j) for i ∈ [1, n], j ∈ [1, m], and represent

them in the matrix

Φ :=













φ(x1, t1) φ(x2, t1) . . . φ(xn, t1)

φ(x1, t2) φ(x2, t2) . . . φ(xn, t2)
...

...
. . .

...

φ(x1, tm) φ(x2, tm) . . . φ(xn, tm)













,

after which we define Ψ := 1
m−1ΦΦ

T as the associated correlation matrix. The eigenvec-

tors of this matrix Ψ are then the modes ψi in (16); the coefficients αi are found via

taking the inner product of φ with the corresponding mode.

Specifically considering discrete approximations to ergodic systems, one way of

constructing the matrix Φ is to take a time series of snapshots {φi}
n+m−1
i=1 , and input them

into the matrix

Φ :=













φ1 φ2 . . . φn

φ2 φ3 . . . φn+1
...

...
. . .

...

φm φm+1 . . . φm+n−1













,

with the implicit assumption that the flow at (x2, t1) = (x1, t2) etc. Intuitively, this

may be thought of as the structure of the underlying flow “moving through” the spatial

components of the field. Note now that the elements of Ψ may be written as (Ψ)i, j =
∑n

k=1(Φ)i,k(Φ)k, j; the parameter n thus represents the number of products summed over

to construct an element of the correlation matrix.

For intuition, consider a very tall, thin matrix with n<< m. The elements of Ψ are

thus comprised of relatively small summations and thus would not be very accurate

realisations of the “true” underlying correlations; similarly as we increase n the accuracy

of our approximation increases. Further, note that the columns of the matrix Φ represent

8Note that we use the formulation discussed in (Iungo and Lombardi 2011).
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more observations to be considered in the construction of the correlation matrix, and

so as the time-difference along the columns tends to zero we approach much higher

correlations and vice versa. One can thus imagine a scenario in which certain times are

“dense” in information and other times are “sparse”. Indeed, the authors of (Frame and

Towne 2022) discuss discarding columns of the matrix Φ to ensure the columns are less

correlated and for computational benefit, but we add on that such a technique if applied

to regions of temporal-information sparsity (i.e. where certain columns in the trajectory

matrix do not correspond to much novel information) we can potentially attain very

even better results than the method proposed. Such procedures would no doubt be

useful when dealing with longer time series that have large periods where certain trends

are felt by all time series. For a visual example of POD-based SSA, consider Figure 9,

where we compare it to “classical” SSA on AAPL price.

Figure 9: Comparison of POD-based and classical SSA reconstructions of a

normalised-price time series for AAPL stock over five years.

Here, we have simply discarded every fifth column (as a naive demonstration of

the capabilities of POD-based SSA). This implementation leads to a computational cost

∼ 64% of classical SSA’s due to the computational cost of the SVD on a matrix of size

n×m being O(nm min(n, m)), at the cost losing finer data fluctuations (which, depending

on contexts, might be desirable to retain). Nevertheless, we do not examine this idea

in further detail presently since there it is difficult to know a priori which columns

to discard such that we maximise the novel information gained per column (thereby

reducing “useless” calculation costs in the construction of the SVD). Clearly, there is

an avenue for much further exploration between POD and SSA which we hope our

discussion can support.

Page 21



4.4 Proper Orthogonal Decomposition

Having discussed how we extract trends from our time series, we now turn to the

question for constructing some quantitative measure of similarity between them.
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5 How Similar are Two Time Series?

The question of ascertaining when two time series are similar is one that appears

deceptively simple at first glance. Intuitively, most would be able to tell which time

series out of a given sample are similar, but there are a plethora of quantitative measures

one may employ in this regard. In particular, the question arises of what sense of

similarity is desired. Do we seek the overall shape to be the same? Are we concerned

with lead-lag effects? Do we care about absolute or relative differences? These are all

questions which must be discussed depending on what relationships we seek to establish

between the time series.

Here we present several methods to quantify similarity, choose one, and justify our

choice. The methods we discuss are split broadly into two groups: statistical measures

(namely based on correlation) and distance based measures. Before we proceed, however,

we first separate the notion of distance and similarity.

5.1 Distance, Similarity, and their Relationship

In all the papers we have looked at within time series analysis, authors relate a notion

of high distance directly with low similarity. This intuitively makes sense if we consider

two time series represented as two vectors, and the distance measure we use to be the

Euclidean norm. If the vectors are the same, their distance measure is zero, corresponding

to maximum similarity. Further, if the two vectors are mutually orthogonal, their norm

would be relatively large - meaning a low similarity.

However, this notion of similarity does not necessarily have any mathematical backing,

and it is not obvious why any classification of distance should necessarily provide the

same classification based on a measure of similarity. Indeed, the authors of (Emms and

Franco-Penya 2013) discuss an example where distance-based methods’ results may

be replicated by similarity-based methods’, but not vice versa. Therefore, this question

of effectively relating these two notions is addressed in papers such as (Elzinga and

Studer 2019). The authors describe various conditions which a similarity measure of

two objects s(x , y) should hold,

s(x , y)≥ 0, (17)

s(x , y)≤min {s(x , x), s(y, y)} , (18)

s(x , y) = s(y, x), (19)

s(x , y) + s(z, z)≥ s(x , z) + s(y, z). (20)
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Here, (17) represents the idea that similarity is strictly non-negative, (18) that the

similarity of an object and a different object is less than the self-similarities of either

of the objects, (18) represents that similarity is symmetric in its arguments, and the

last represents an inequality akin to the triangle inequality for norms, adjusted for the

notion that “closer” objects have a higher value for s(x , y).

In particular, the authors go on to discuss various measures of similarity: for our

purposes, we consider what we dub the “reference similarity measure” (RSM) defined

for some distance metric d(x , y) and reference object r as

sRSM(x , y) = d(x , r) + d(y, r)− d(x , y);

for our analysis we simply set r to be a time series of all zero values for agnosticity to

context. Furthermore, the authors of (Chen, ma, and Zhang 2009) discuss a map of the

form (which we call the Gaussian similarity measure (GSM))

sGSM(x , y) = exp {−d(x , y)} ,

where again d(x , y) is some distance metric. We name this similarity metric such due to

the resemblance to the radial basis function e−∥x−y∥2 used in kernel methods for similarity

measurement (as discussed in (Schoenberg 1938)).

An important point to note now, however, is that any ranking implemented by

a distance metric will be replicated by sGSM . To show this, consider the case where

d(x , a)≤ d(x , b)≤ d(x , c). Noting that the function exp {−x} is strictly decreasing, we

thus immediately attain the ordering sGSM(x , a)≥ sGSM(x , b)≥ sGSM(x , c).

5.2 Distance Based Measures

Distance based measures, as their name implies, utilise some measure of difference of

the values of two time series x , y in constructing their notion of similarity.

5.2.1 Euclidean Distance

Perhaps the simplest measure to describe is simply the Euclidean distance. For time

series XT , YT , first construct the vectors x⃗ , y⃗ = (x1, . . . , xT )T , (y1, . . . , yT )T , and then

define the Euclidean distance dE on them as

dE(XT , YT ) = ∥x⃗ − y⃗∥2,

with the subscript denoting the use of the 2-norm.
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This method of distance metric has several advantages. Primarily, it is incredibly

cheap: it is O(n) for given vectors of length n, and moreover it is simple to implement,

requiring trivial algebra.

The norm, however, does suffer from the fact that it is a “stiff” method, in that

the comparisons are done element by element; this means that a smaller value for dE

arises when the series values are similar at corresponding time indices. This brings us

to a feature we strongly desire in similarity measures, which is the ability to account

for lead-lag effects (methods that allow for such “warping” are referred to as “elastic”

methods). In order to demonstrate this with a concrete example, we first discuss two

alternative similarity measures which aim to rectify this failing, and then provide an

illustration of this in play.

5.2.2 Dynamic Time Warping

We thus move to discuss the first of our elastic measures, Dynamic Time Warping (DTW)

(Keogh and Ratanamahatana 2005). Dynamic Time Warping has enjoyed much success

in time series similarity analysis, and is often used as the de-facto standard against which

to benchmark results as shown in (Pei, Tax, and Maaten 2016). The primary motivation

for the introduction of DTW was to rectify the issues incurred via the stiffness of the

Euclidean distance and other measures. We construct DTW as such.

For two time series XT , YT , we first take some distance metric evaluating the difference

of their values at time step t (such as d(x t , yt) = |x t − yt |). We then construct a T × T

grid G, where we define

Gi, j = d(x i, y j) ∀(i, j) ∈ [(1,1), . . . , (T, T )].

We then construct a warping path, defined as a set of elements W := {wk}
N
k=1 =

{(i, j)k}
N
k=1, that is to say a set of tuples of indices on the grid G. The elements of

W are defined such that they map from one series to another; intuitively one may think

of this as a set of “differences” to collect as we change one series’ values to the other’s.

We then implement some constraints on these maps.

C.1 w1 = (1, 1) and wN = (T, T ), which serves to ensure we match the starts and ends

of both series.

C.2 If wk = (i0, j0), then wk−1 = (i1, j1), where 0 ≤ i0 − i1 ≤ 1, and 0 ≤ j0 − j1 ≤ 1.

By forcing the tuples of indices to be non-decreasing, we ensure that we “warp”

forward in time.
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C.3 For a given element wk = (i0, j0), allow |i0 − j0| ≤ω, for some window parameter

ω. This parameter constrains the allowable points to match (so we do not match

time points between series which are further than ω apart), which may serve to

help pick out temporally local similarities over ones that are further in time.

With these constraints in place, note that we can also further constrain T ≤ N ≤ 2(T−1).

We may then define the DTW cost as the minimum of the sum of all elements wi, over

all maps W which fulfil the constraints C.1-C.3,

dDTW (XT , YT ) =min
W

¨

N
∑

i=1

wi

«

. (21)

However, we can practically implement the DTW cost via instead constructing a (T +

1)× (T + 1) grid of accumulated costs A (indexing from 0≤ i, j ≤ T), populating it with

Ai, j =∞∀(i, j) ̸= (0, 0), A0,0 = 0, and using the dynamic programming equation

Ai, j =
�

d(x i, y j) +min
�

Ai−1, j, Ai, j−1, Ai−1, j−1

	

| (i, j) ∈W
	

. (22)

Then, we simply define dDTW (XT , YT ) = AT,T .

5.2.3 Time Warp Edit Distance

The last method we discuss is another elastic measure, the Time Warp Edit Distance

(TWED). TWED, being a relatively recent method, has in certain contexts been shown to

provide similarity classification better than that of DTW, which is why we have chosen to

utilise this measure (Grabocka and Schmidt-Thieme 2018; X. Wang et al. 2010). Being

another elastic measure, it can essentially be seen as a similar implementation of DTW

in that it permits the “warping” of time to compute similarity between time series. The

key areas in which TWED differs from DTW are namely that TWED does not impose a

hard limit, but penalises warping in time depending on a parameter ν, and also that

TWED can be conceptualised as acting to edit the time series to match one another, by

either “deleting” observations or “matching” observations so the overall shape of the

time series better resemble each other. This conceptualisation of an elastic difference

measure follows directly from the implementation of Edit Distances in Real Sequences

(Wagner and Fischer 1974).

To construct the TWED score, dTW ED, we first take some distance metric d(x i, y j) as

in DTW and initialise a (T +1)× (T +1) grid A similar to that as in DTW (again indexing

from zero). Re-utilising the constraints C.1 and C.2 on our desired mappings W1, we

define the final cost by the element AT,T , where A is populated via

Ai, j =
�

min
�

Ai−1, j−1 + ΓX ,Y , Ai−1, j + ΓX , Ai, j−1 + ΓY } | i, j ∈W1

	

. (23)
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Here, we have

ΓX ,Y = d
�

x i, y j

�

+ d
�

x i−1, y j−1

�

+ 2ν|i − j|, (24)

ΓX = d (x i, x i−1) + ν+λ, (25)

ΓY = d
�

y j, y j−1

�

+ ν+λ, (26)

where ν is the stiffness parameter discussed above, and λ the deletion penalty penalising

“deletions” in either time series, with a “deletion” being the act of removing an entry

in one time series such that the overall time series better approximates the other. We

can demonstrate a visual implementation of TWED via the populated grid A presented

in Figure 10 for two small time series X3, Y3. Note in particular that our choices for

the parameters ν and λ are not particularly important for this case: we simply wish to

present an example of how one might construct a TWED grid and compute the desired

score.

∞

∞

∞

∞∞ ∞0

13

4

18 17

12

13

13

16

14

15 −3
X3

1

1

9

Y3

Figure 10: Populated TWED grid for two example time series, with ν= λ= 0.5.

AT,T = 16.

Having discussed our two elastic methods, we now provide an example demonstrating

how elasticity is a desirable feature to have in our time series analysis.

Consider a signal f (x), a translation of that signal f (x − c), and a different signal

entirely (with an additional layer of Gaussian noise added on top) g(x). We know

that the signals f (x) and f (x − c) are more similar than the signals g(x) and f (x) by

construction: we may state that the initial signal lags the translated signal by c. However,

we see from Figure 11 that using the Euclidean distance as our similarity measure, we

note that we would observe g(x) to be the more similar signal instead. However, using

the two other elastic measures we have discussed we see that we correctly identify the

translated signal as being more similar to the initial signal.
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Figure 11: Comparison of similarity measures for an initial signal, the same signal

translated, and a noisy signal.

Nevertheless, it must be noted that both TWED and DTW have a computational

cost of O(T 2), a relatively steep cost for our time series. Further, if we are to consider

implementations in contexts in which we cross-examine M time series, we attain a

computational cost of O(M2T 2) as opposed to the O(M2T ) we would have for the simple

Euclidean distance case: potentially devastating for contexts with low compute and high

time sensitivity, and thus an important drawback to consider.

5.3 Correlation

Another popular method for examining similarity of shape in time series is via correlation.

However, despite seeming initially desirable, note that time series which are correlated

may still diverge in value (provided the movements in values remain similar); this is not

the case, however, for time series which are co-integrated. Before we can define what

we mean by co-integrated time series, we first must define integrated time series:

Definition 5 (Integrated time series). Define the operator (1− D)Zt := Zt − Zt−1. A time

series Z is then integrated to order d if (1− D)d Z is stationary.

Using Definition 5, we may then define co-integration:

Definition 6 (Co-integration (Hamilton 1994)). A set of time series are co-integrated if

1. The time series are all themselves integrated to order d.

2. There exists a linear combination of these time series which is integrated to order

d1 < d.
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Note in particular that co-integrated time series remain “close” in both value and

trend, as opposed to correlation which only retains trend (Hamilton 1994). While this

distinction is arbitrary, in the context of financial data we believe it does not make sense

to consider just the shape when discussing similarity between time series as actual value

differences may also play a part in financial strategies, such as via looking to group

“large” tickers together.

In order to decide which of these methods9 we utilise for our chosen similarity

measure, we now must construct an avenue to differentiate them. This is a particularly

sensitive task for our context as we seek a solution for a very specific set of data, and

moreover we are working with publicly available stock series in a specified time-frame

(and thus set of market conditions).

To attempt to decide upon a choice, we follow a procedure outlined as such:

1. We generate a list of 24 random tickers from various sectors (24 being ∼ 5% of

the number of tickers we work with).

2. For each of these twenty four tickers, we find three other tickers which are from

the same GICS sub-sector; we label these three other tickers as being “similar” to

our initial ticker. These choices are verified by visual inspection: if a given ticker

Y is obviously very dissimilar to ticker X despite being in the same sub-sector,

another ticker is chosen, potentially branching to the GICS sector if the sub-sector

is too small.

3. Then, for each of our twenty four chosen ticker labels, we calculate the top five

most similar (five being approximately 1% of the total number of tickers within

our data set) other ticker labels for each of the nine different methods we have to

analyse.

Note that our choice of the value five is both somewhat arbitrary yet not particularly

important: we expect our similarity measures to not perfectly replicate our results

given that there is no inherent guarantee that tickers within similar sub-sectors

ought to be the closest in similarity to each other, and so we allow for some “flex”

with choosing to accept any appearance within the top five.

4. We then compute, for each of the twenty four chosen tickers, how many times each

similarity method’s top five most similar tickers has a ticker that matches one of

9Recall that for any given distance metric d, we also have two associated similarity metrics sGSM and

sRSM - leading to nine different choices for the similarity measurement.
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the three benchmark similar tickers we have chosen. To illustrate, consider Table

1, in which we illustrate this methodology for a chosen synthetic ticker. Suppose

we find that TIC1, TIC2, and TIC3 are the three chosen reference tickers. Then,

after constructing the top five most similar tickers from each similarity method,

we can see from Table 1 that (of the methods shown) the Euclidean distance gives

the best results - matching all three of the desired tickers.

Similar Tickers Top Five Tickers by Similarity Method

TIC1

TIC2

TIC3

dE dDTW dTW ED sRSM(dE) . . .

TIC1 TIC2 TIC7 TIC19 . . .

TIC23 TIC11 TIC99 TIC330 . . .

TIC2 TIC8 TIC3 TIC5 . . .

TIC366 TIC223 TIC23 TIC20 . . .

TIC3 TIC3 TIC7 TIC8 . . .

Table 1: Example similarity examination for a synthetic ticker. Of the shown similarity

methods, dE attains the best results.

To generate our final choice of similarity measure, we simply choose the method

which attains the most “matches” over all twenty four tickers, so (assuming the

ticker utilised in Table 1 is the first) the score for the Euclidean distance would be

calculated by 3+ . . . and the score for DTW would be calculated by 2+ . . ..

Using this methodology, we can observe our results in Table 2 which show that the

TWED score and the TWED-based Gaussian similarity measure provide the best results,

and so due to simplicity we henceforth work solely with the TWED score.

Score Attained by Similarity Method

Distance Measure d(x , y) sGSM(d(x , y)) sRSM(d(x , y))

dE 30 30 30

dDTW 21 21 21

dTW ED 36 36 18

Table 2: Table of results for all similarity measure comparisons.

We next turn towards choosing a method to establish when two time series start to

become dissimilar. This problem is of interest namely because we know that “similarity”

of two real-world time series is not a constant, and therefore detecting when two
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formerly-similar series have begun to diverge (such that we can stop tracking one, or

execute a trading strategy relying on the divergence of their prices) presents an important

challenge.
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6 Dissimilarity Finding

We present two approaches towards answering the question of when two time series

have started to diverge, both of which necessitate the usage of a “window” within which

to analyse data to check if the time series being examined are converging or diverging,

in the colloquial sense. Also note that we begin our analysis with synthetic data, but we

present some results on our tickers in Section 8.

A point to note is that we wish to seek some “online” avenue of detecting dissimilari-

ties which occur. Here, “online” methods refer to methods which take in new data as it

arrives and output their results ideally immediately (but in practice with some delay

governed by the window chosen). The alternatives to these approaches are known as

“offline” methods, which look at entire time series of data and then highlight areas in

which there are dissimilarities between the time series. Given the context of seeking

to apply these methods to financial data, it does not make sense for us to seek offline

methods - since one can fairly easily imagine a scenario in which the time lag induced

by offline methods leads to disastrous financial ramifications.

To construct our synthetic data, we utilise a one-dimensional random walk of length

T wherein we define our synthetic path via first constructing a set of probabilities {αi}
T
i=1,

where αi ∼ U(0, 1) for i = 1, . . . T . Next, generate the series of movements MT , where

(MT )i =

(

1 if αi ≤ 0.5,

−1 if αi > 0.5,

We then define the walk WT via

(WT )i =
i
∑

j=1

(MT ) j ,

for i = 1, . . . T . To then generate a time series which is synthetically similar, we first

generate a “noised” version of our walk NT by adding on Gaussian noise with mean

zero and variance one-hundredth of that of our walk. We then choose a subsection of

(NT )i, I1 ≤ i ≤ I2 where I1 > 1, I2 < T , and re-run a random walk in that subsection,

thereby generating a walk W̃T which is broadly similar but has a section in which the

overall trends diverge.

Our first method of analysing for introduced dissimilarities may be thought of as

using a moving TWED score, wherein we take a rolling window of our time series

and compute the cross-TWED scores within this window. When the scores reach some

threshold, we can state that the series have begun to show dissimilarity or similarity,

and so we may act as appropriate. However, this presents us with two immediate issues.
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Firstly, there is the question of what choice of window length to use as the rolling

window. Though there has been work done on examining optimal window sizes for

such algorithms (Imani et al. 2021), difficulties arise when utilising automatic detection

methods on our data set due to the inherent noisiness of the data. Indeed, implementing

the algorithm proposed in (Imani et al. 2021) results in a suggested window size of one,

clearly a nonsensical result. Thus, we turn instead to a more qualitative approach.

Financially, there are several timescales that make sense for us to examine our data

from. Publicly traded companies release statements quarterly so this presents one

possible time-gap, but we may desire finer resolution in picking up changes so we may

also seek to look for a window that is shorter (such as a month). Further, there is the

issue that the actual window length will be contextually dependent on the use case of

such analysis: for financial time series there might be certain windows which do not

make sense (for example in looking for decade-long trends), but these might play a part

in other contexts.

The next issue pertains with the actual values of the TWED scores as we slide our

window. Since the value of the TWED score is dependent completely upon the two time

series that we analyse, deciding when a threshold has been met such that the time series

are dissimilar is something that cannot be decided a priori. We propose a method in

which at first the moving TWED score is simply ran for an amount of time to generate a

baseline, and then the following data is then normalised by the deviation measured. This

ensures that we are able to set roughly an equivalent threshold for each examination of

the moving TWED score per pair of time series, under the assumption that underlying

similarities do not change too much. We can explore this within Figure 12.

Figure 12: Example of the moving TWED score method of detecting dissimilarities.
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Clearly, this method provides reasonable results (in this context using the time series

until t = 5 to set the variance), but it is simple to see that if the trends of the time series

diverge, we would need to at some point “re-calibrate” the variance normalisation. To

look for alternative approaches, we examine work done in change point detection within

time series. The authors of (Aminikhanghahi and Cook 2017) present a meta-analysis of

various change point detection algorithms, and discuss how Relative Unconstrained Least

Squares Importance Fitting (RuLSIF) (Liu et al. 2013) appears to regularly outperform

other methods in detecting changes inherent to time series. We first introduce some

definitions before we define RuLSIF in detail, expanding upon the analysis in (Liu et al.

2013).

To start, consider a sample from a time series X (t) := (x(t), x(t+1), . . . x(t+k−1))T

of length k. Then define by X (t) := (X (t), . . . X (t + k− 1)) the Hankel sample matrix

corresponding to k of these time series samples of the function x . We aim to try and

model the probability distributions of the entries in the matrices X (t) and X (t + k),

to try and determine if they are sufficiently differentiated to claim dissimilarity has

occurred.

Next we define the Pearson Divergence, allowing us to measure the divergence of

two probability distributions. This is helpful to us given that a “dissimilarity” is induced

when the incoming time series value are not likely to be from the same distributions as

the previous ones.

Definition 7 (Pearson Divergence (Liu et al. 2013)). For two probability distributions P

and Q (with associated probability density functions p(X ) and q(X ) respectively), define

the Pearson Divergence (PE) as

PE(P ∥Q) :=
1
2

∫

q(X )
�

p(X )
q(X )
− 1
�2

dX . (27)

The most immediate issue is that we do not know either p(X ) or q(X ), and so standard

methods have (such as via KLIEP, another algorithm used in change-point detection)

estimated the density ratio,

r(X ) :=
p(X )
q(X )

.

We next define the α-Pearson Divergence.

Definition 8 (α-Pearson Divergence (Liu et al. 2013)). For two probability distributions

P and Q (with associated probability density functions p(X ) and q(X ) respectively), define
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the α-Pearson Divergence (PE) as

PEα(P ∥Q) := PE(P ∥ αP + (1−α)Q) (28)

=
1
2

∫

qα(X )
�

p(X )
qα(X )

− 1
�2

dX , (29)

where qα(X ) = αp(X ) + (1−α)q(X ) is the α-mixture density.

We then define the α-relative density ratio,

rα(X ) :=
p(X )
qα(X )

,

as the variable we wish to estimate (rather than the individual probability density ratios

themselves). Here, the parameter α represents some variable accounting for the mixing

of the probability densities of P and Q: the primary reason for its inclusion is such that

we may bound the ratio rα(X ) whereas the value r0(X ) recovers the formulation as in

uLSIF10, shown to have non-ideal convergence properties when q(X ) is small (Yamada

et al. 2013).

Next, to determine the ratio rα(X ), we model the α-relative density ratio via the

kernel expansion

m(X ;θ ) =
n
∑

i=1

θiK(X , X i), (30)

where X i is the ith sample of p(X ), θ = (θ1, . . .θn)T ∈ Rn×1 are weights, and K(X , Y )

is the Gaussian radial basis function11. To generate our model m, we minimise (with

respect to θ) the functional

J(X ) :=
1
2

∫

qα(X ) (rα(X )−m(X ;θ ))2 dX , (31)

=
�����������1
2

∫

qα(X )r
2
α
(X ) dX (32)

−
∫

p(X )rα(X )m(X ;θ ) dX +
α

2

∫

p(X )m2(X ;θ ) dX +
1−α

2

∫

q(X )m2(X ;θ ) dX ,

(33)

where the cancelled term is ignored as it is a constant. We can thus re-express (33) as

solving the problem

min
θ

§

1
2
θ T Ĥθ − ĥTθ +

σ

2
θ Tθ

ª

, (34)

10The method upon which RuLSIF is based.
11Correspondingly, X̃ i is the ith sample of q(X ).
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where the parameter σ is a smoothing term associated with regularisation, ĥ j :=

n−1
∑n

i=1 K(X i, X j), and

Ĥi, j :=
α

n

n
∑

p=1

K(X p, X i)K(X p, X j) +
1−α

n

n
∑

p=1

K(X̃ p, X i)K(X̃ p, X j). (35)

Thus, the solution to the minimisation problem (34) is (after differentiating with

respect to θ)

θ :=
�

Ĥ +σIn

�−1
h̄, (36)

where In is the identity; this value of θ is inserted into (30) to provide our model for

the α-relative density ratio. Next, consider expression (29). We expand by writing

PEα(P ∥Q) =
1
2

∫

qα(X )
�

p(X )
qα(X )

�2

dX −
∫

����qα(X )
p(X )
����qα(X )

dX +
1
2

∫

qα(X ) dX , (37)

=
1
2

∫

qα(X )
�

p(X )
qα(X )

�2

dX −
1
2

, (38)

= −
1
2

∫

qα(X )
�

p(X )
qα(X )

�2

dX +

∫

p(X )
�

p(X )
qα(X )

�

dX −
1
2

. (39)

Next, substituting qα(X ) = αp(X ) + (1−α)q(X ) into the coloured term within the first

integral in (39), discretising, and substituting in our model for rα(X ), we arrive at a

calculable expression for the α-Pearson Divergence as

P̂ Eα(P ∥Q) = −
α

2n

n
∑

i=1

m2

�

X i;θ

�

−
1−α

2n

n
∑

i=1

m2
�

X̃ i;θ
�

+
1
n

n
∑

i=1

m(X i;θ )−
1
2

. (40)

To implement a measure for calculating the change points, we utilise the symmetric

expression12

PEα := PEα(Pt ∥ Pt+n) + PEα(Pt+n ∥ Pt), (41)

where Pt denotes the probability distribution associated with X (t), approximating (41)

using the expressions in (40). We attain our values for θ via a neural network using

the Adam optimiser minimising the loss function (34). We use this neural-network

based approach as opposed to the kernel-based approach discussed primarily due to

past studies (as in (Hushchyn and Ustyuzhanin 2021)) demonstrating better overall

performance; note that this is not a novel result and is a known limitation of kernel-based

methodologies (Ghorbani et al. 2021).

12Note that the expression (29) is not symmetric in P and Q.
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We demonstrate RuLSIF via an implementation on our data, plotting the similarity

alongside the moving TWED score method. We present our results in Figure 13, where

we utilise RuLSIF on the moving TWED score (plotting our dissimilarity (41)); we find

the relative peaks of the dissimilarity by looking for maxima within windows of values

(defined as w= 30), with n= 2w and α= 0.2.

Figure 13: Comparison of moving TWED score with RuLSIF on BLK and FITB tickers,

with Z-normalised prices.

One clear disadvantage with RuLSIF is that we do not detect when we enter or

exit a certain regime, but merely when we change regimes. This means that there is

a greater induced complexity in seeking dissimilarities as we must keep track of the

changes within regimes, as these may simply be going from “very similar” to “similar”

(in a qualitative sense). Further, we do not get rid of the issue of needing to decide upon

a window size for our analysis (and the effects of poor window size can be seen in the

spurious “similarities” detected), and also that utilising this method is necessarily more

computationally complex than the moving TWED score.

However, we do get rid of the issue of needing to decide upon thresholds for when

dissimilarity occurs as these should be picked up inherently within the algorithm. We

believe this benefit is great enough that we suggest to use RuLSIF for our dissimilarity

detection, as deciding when and how the TWED score ought to be re-normalised is not

a trivial task, and is certainly one that is more difficult than simply checking to see what

“regime” one is in when the RuLSIF algorithm identifies a change point.

Having decided upon a method for noticing changes in similarity for our time series,

we now discuss some specifics in the actual similarity analysis for our data set. We also

provide more insight into the incorporation of sector-level data within our analysis.
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7 Similarity Scoring

For the bulk of our data generation, we utilise series_scorer (Baig 2023), a Python

package developed by the author for the smoothing and cross-scoring of multiple time

series13. It is worth noting at this point that the data generation was not a trivial task:

using parallelised code, generation of a cross-score14 matrix of size 477× 477 using

TWED takes approximately 12 hours given the length of the time series we are working

with.

Once we have extracted trends via SSA and then cross-scored, we then turn towards

incorporating sector-level information regarding our data set, which we hope provides

further useful insight. To proceed, let us first introduce some terminology which will be

useful when discussing cross-sector similarities.

We first discuss intra-sector scoring. To generate scores of this type, consider a

given sector s1. We generate all the ticker labels which correspond to this sector, and

then compute the TWED score between every ticker in this sector and every ticker

corresponding to a sector s2 (with s2 potentially the same sector as s1). Lastly, we take

the means of these scores - which represents the intra-sector TWED score between

sectors s1 and s2.

Next, we discuss inter-sector scoring. Here, we calculate the mean normalised price

movements of all the tickers within a sector s1, and compute the TWED score between

this averaged time series with the averaged time series of another sector s2. Note how

that while s2 may be the same sector as s1, this would lead to a cross-score of zero.

Nevertheless, this score we calculate is thus the inter-sector TWED score.

To then decide which of these methods to use, we utilise a similar approach as in our

discussion of choice of similarity measure. We generate 24 random tickers, and get the

sectors that they belong to. Then, using both methods, we compute the closest sector to

a given ticker: we choose the method that better demonstrates that the closest sectors

are the ones that these randomly chosen tickers belong to.

Using this analysis, we find that the intra-sector method outperforms the inter-

sector method (the former predicting 11 sectors correctly versus the latter’s 7 correct

predictions), and so we make the decision to use this in further discussion; we now

turn towards analysing our results and discussing the insights we have found. Note that

the intra-sector performing somewhat better may be due to the fact that intra-sector

13Note that this software has already been submitted for credit as part of the Python in Scientific

Computing special topic as part of the MSc MMSC 2022-2023.
14Defining “cross-scoring” as computing the TWED score between any given time series.
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scoring is an indication of the closeness, on average, to the tickers within a given sector,

whereas inter-sector scoring is the closeness to the average movements of the sector.

Intuitively, the former may provide better results since there is better incorporation of

ticker-ticker effects between specific companies, rather than them being “washed out”

in the comparison between just two time series.
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8 Results

We can begin our discussion of results by examining Figure 14, where we present the

top three closest tickers to GOOG in Figure 14(a) and the top three most similar tickers

to SPGI in Figure 14(b).

(a) Top three most similar tickers to GOOG. (b) Top three most similar tickers to SPGI.

Figure 14: Comparison of top three most similar tickers for GOOG and SPGI, presented

as returns over 90 days.

Considering first Figure 14(a), we see that we pick up on GOOGL (the Class A

Alphabet stock) when we desire similarity with the Class C ticker GOOG, a good sign that

we are picking up on obvious similarities. The other two tickers we see are Monolithic

Power Systems, an industrial computing hardware provider, and Jack Henry & Associates,

a FinTech company. Importantly, while these might be relatively surprising choices, that

these are still clearly very visually similar, wherein we see their returns following very

similar patterns of the three months plotted.

Next, we turn to considering Figure 14(b). Here, the most similar tickers to S&P

Global are comprised of Moody’s Corporation (also providing financial information),

Brown & Brown (an insurance firm), and Cintas, which provides products such as apparel

and services to other businesses. Within this selection of results we once again have

perhaps a surprising outcome (CTAS) but also one that we clearly expect (MCO): this

is a desirable end-result in so much as our analysis appears to be providing potentially

non-intuitive insight into ticker similarities, beyond “standard” approaches. Were it

the case that our analysis simply provided similar tickers to one another that we may

otherwise expect (such as Pepsi and Coca-Cola), one could then indeed ask why we

would bother to use this complicated analysis in production environments: we consider

the generation of these novel pairs a success in terms of providing us avenues to explore

further whether indeed that the tickers generated are “similar” in a meaningful sense

(that is to say, is it indeed possible to extract financial utility from our analysis).
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We may also turn towards examining similarity across sectors by examining the

means of the cross-sector scores which we present in Figure 15.

Figure 15: Cross-sector mean TWED scores using the intra-sector method.

Several conclusions may immediately be made from this figure. Firstly, Utilities

companies tend to be relatively self-similar amongst each other, far more than the other

sectors. Equally, Energy companies are quite dissimilar to all other sectors (strikingly

so compared to Consumer Staples companies), and also amongst themselves. We

can also state that there are three sectors (Industrials, Financials, and Information

Technology) that display relatively high cross-similarity amongst each other: in particular

the relationship between Financial and IT companies is fairly close. This is somewhat

as we expect given the composition of the S&P 500 at the time (and indeed now): the

largest market capitalisations were almost all without fail either technology companies

or financial services companies, and so market movements would be unreasonably

influenced by their own movements (thereby linking the two sectors in this analysis).

Further, we can say that in general, it is not the case that companies within their own

sector are significantly more self-similar than they are to companies in other sectors.
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We can proceed by attempting to get an idea of how strong our conclusions are, by

now viewing the deviations on this data which we present within Figure 16.

Figure 16: Cross-sector deviations on TWED scores using the intra-sector method.

We see that our conclusions drawn earlier for Utilities are relatively weak, but that

for Energy companies they are relatively strong (i.e. that indeed we can say that Energy

companies tend to be more dissimilar to other sectors than the norm). Further, we can

see from Figure 16 that there are several sectors which have relatively high variances

within themselves as in Health Care, and that there exist relationships like that between

Financials and Health Care in which we see relatively high variances as well. We can

also say that in general, the variances within the sectors are higher than they usually

are across sectors, meaning our conclusions regarding companies not being inherently

more self-similar within sectors are relatively weak.

Note that at this point we may also back-justify our methodology for choosing our

choice of similarity measure by examining the cross-scores for the GICS sub-sectors, by

considering the information which we present in Figure 17. Here, we see that generally,

tickers are more similar to one another within their own sub-sectors than their sectors,
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meaning that it is not a bad assumption to believe that tickers within the same sub-sector

should appear within their top-n most similar lists.

Figure 17: Cross-sub-sector mean TWED scores.

We may also analyse what sectors a given ticker is most similar to as in Figure 18,

wherein we consider similar sectors to BLK.

Figure 18: Top 3 similar sectors to BLK using the intra-scoring method.

These results are reassuring given that BLK (being a financial company) is shown to

be most similar to other Financials and IT companies most, followed by Industrials; this

then presents an opportunity to delve deeper to try and pre-emptively hedge against any

shocks that may be occurring in any of these sectors. Such analysis may be helpful in

seeking to provide insight into (for example) how to better predict the performance of a

ticker if we know there exists some lead-lag effects with that ticker and a specific sector.
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8.1 Low-Rank SSA, Hankel Matrices, & Chebyshev Expansions

We turn to discuss another avenue of exploration which arose throughout our wider work,

delving deeper into the theoretical background of the analysis we have performed15. We

start by posing two questions:

1. When is a given signal s(t) such that a rank-r SSA truncation completely recovers

the signal?

2. Can we say anything about the convergence of SSA to the optimal signal in terms

of the rank of reconstruction?

To the first, the answer has been discussed in (V. N. Zhigljavsky and Anatoly A. 2001) that

time series comprised of linear combinations of polynomials, sinusoidal, and exponentials

permit Hankelised structures which are of finite rank. We discuss these three types of

functions in turn and provide an alternative proof for series comprised of these functions

in the case of polynomials.

Theorem 2 (Rank of time series comprised of a finite sum of polynomials). For a time

series comprised of a polynomial P(t) of degree p0, consider the trajectory matrix formed

by this polynomial, with window length L = (T + 1)/2. The rank of this trajectory matrix

is p0 + 1.

We construct the proof by induction.

Proof. The base case, with p0 = 1, is trivial. For the next step in the inductive proof,

assume that we need the vectors (1, 1, . . . , 1)T , (0, 1, . . . L−1)T , . . . (0, 1k, . . . , (L−1)k)T to

represent the trajectory matrix for a polynomial of degree k, which we denote by Pk(t).

Now consider the trajectory matrix for a polynomial of degree k+ 1. If we consider this

polynomial

Pk+1(t) = α0 +α1 t1 + . . .αk+1 tk+1, (42)

we note that we can represent all but the last term in (42) via the basis vectors associated

with Pk(t), and we only lack a basis vector which can represent a term of the form tk+1. It

is then simple to see that the vector which does this is precisely (0, 1k+1, . . . , (L−1)k+1)T ;

we have thus shown that we need k+ 2 basis vectors to represent the trajectory matrix

associated with Pk+1(t), completing the proof.

Similarly, we may discuss series comprised of different sinusoids.

15We thank Professor Nakatsukasa significantly for his contributions towards this section, in particular

for posing the guiding questions and for support suggesting ideas for experimentation.
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Theorem 3 (Rank of time series comprised of a finite sum of sinusoids). Consider a time

series of the form

f (t) =
n
∑

k=1

αk sin (ωk t) + βk cos (ωk t) .

When embedded into a trajectory matrix with L = (T + 1)/2, the rank of this matrix is 2n.

Proof. The proof is completed by simply noting that each frequency ωk is associated

with two basis vectors
�

Bk
1 , Bk

2

	

, with the indices of these vectors defined such that

(Bk
1)i = αk sin(ωk · t i)

(Bk
2)i = βk cos(ωk · t i)

)

for i = 1, . . . , L.

Lastly, we discuss exponentials.

Theorem 4 (Rank of time series comprised of a finite sum of exponentials). Consider a

time series of the form

f (t) =
n
∑

k=1

αk exp {βk t} .

When embedded into a trajectory matrix with L = (T + 1)/2, the rank of this matrix is n.

The proof follows similarly.

Proof. Noting that exp {βk t +∆t} = exp {βk t}·exp {∆t} = δ exp {βk t}, we immediately

see that the columns of the trajectory matrix spanned by a single “mode” βk t are simply

linear combinations of the first, since the increment in time along the columns is constant.

Next, note that the basis vectors
�

Bk
	

defined by

(Bk)i = αk exp {βk · t i} ,

where i = 1, . . . , L, are linearly independent precisely due to the opposite argument,

namely that there exists no constant δ̃ relating any two columns.

Discussing now the second question, wherein we seek insight into the convergence

of SSA in terms of the rank of reconstruction chosen (provided we have a noisy low-rank

signal), we first turn towards discussing the effect of the noise itself.

We first note that the “noise” component added to this matrix nearly ensures that the

corresponding trajectory matrix is full-rank. To show this, consider a low-rank Hankel
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matrix H. As the rank of the matrix is deficient, we have R(Hr) = R(Hr+1), where Hr

is the minimal full-rank matrix, and Hr+1 is the same matrix with another column of L

observations. We thus have the relationship (for all αi ̸= 0 and hi the columns of Hr+1)

α1h1 +α2h2 + . . .+αrhr +αr+1hr+1 = 0. (43)

Therefore, by the structure of the Hankel matrix we must have

α1si +α2si+1 + . . .+αr+1si+r = 0, (44)

for all i ∈ [1, N − r], where si are the measurement of the time series. In general, we

expect that a noisy matrix will not satisfy (44), meaning that it cannot be low-rank.

We can thus experimentally explore the effect that noise has on the optimal rank

by taking twenty one different low-rank functions, adding Gaussian noise of varying

levels (centred with µ= 0 and σ ∈ [1× 10−3, 1× 101]), and then proceeding to embed

these functions within trajectory matrices. After recording the rank of the trajectory

matrix that would have been formed by the noise-free function, r0, we then perform

SSA truncations to all ranks r ≤min {L, K} on our noisy trajectory matrices. For each of

these truncations, we record the Euclidean distance between the reconstruction and the

noise-free series16, and then plot this data in Figure 19.

Figure 19: Examination of optimal SSA truncation rank against initial rank for various

noisy functions with varying noise levels.

Here, we can see that as we increase the level of noise, we suppress the optimal

truncation rank; as we decrease the level of noise we get closer to the point where

16We use the Euclidean distance since we assess a point-by-point reconstruction.
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the optimal truncation rank is equivalent to the initial noise-free rank. We can explain

this behaviour by the fact that when noise is relatively low, truncations closer to the

rank of the underlying noise-free signal perform better (as we would intuitively expect).

However, when noise is high, this may potentially cause over-fitting as the underlying

signal becomes more difficult to discern. Thus, truncations at even lower ranks would

perform better as they apply more conservative “estimates” of what the underlying signal

would be, by considering only the most dominant of the singular values as corresponding

to the signal.

We can examine this in Figure 20, where we plot the singular value distributions of

the trajectory matrices formed by adding varying levels of Gaussian noise to a low-rank

function. Figure 20(a) presents the overall singular values of these noisy matrices, where

we can see that as noise decreases we suppress the latter singular values (i.e. we have a

much clearer demarcation between noise and signal visually in our singular value plot),

and as noise increases we see that it is more difficult to differentiate between which

singular values correspond to noise and which to signal.

Figure 20(b) presents this information in the form of histograms pertaining to the

singular values associated with the noise levels, we can clearly see that as noise decreases

the bulk of the singular values become “small” and we retain a few “significant” singular

values, as opposed to the case with large noise in which the singular value distribution

is much more spread out.

(a) Singular values for varying noise levels on a

low-rank function.

(b) Singular value distributions with varying noise

for a low-rank function.

Figure 20: Examination of the effect of noise levels on singular values for low-rank

functions.

Lastly, we present some work which we propose provides novel insight into the

relationships between Chebyshev polynomials and Hankel matrices. Consider a function

f (x), x ∈ [−1,1] such that the trajectory matrix formed from this function is of low
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rank. We also know that such a function permits a Chebyshev expansion of the form

f (x) =
n
∑

i=1

ci Ti(X ),

where Ti(x) represents the ith Chebyshev polynomial. We consider the functions

σ = exp {mσ Iσ + γσ} ,

C = exp {mC IC + γC} ,

where σ are the singular values associated with the corresponding trajectory matrix

and C represents the Chebyshev coefficients ci. Looking at a log-scale plot of a random

function in Figure 21, we note that both C and σ appear to decay exponentially, but

at different rates. We thus pose the question of whether there exists some underlying

relationship between the decays of the singular values and the Chebyshev coefficients.

Figure 21: Decay of singular values and Chebyshev coefficients for a low-rank function.

We analyse this by generating the singular values and Chebyshev coefficients for

various low-rank functions. For each function, we take a linear approximation to the

decay of both these variables, and retain the gradients mσ and mC . We present the plot

of these variables and the linear approximation of their relationship in Figure 22.

Note that we have also plotted the rank of the underlying trajectory matrix as well;

the relationship which we observe is as we expect (i.e. that as rank increases we see

slower decay of both the Chebyshev coefficients and the singular values) since higher

rank trajectory matrices have “more” singular values through which to decay. There also

appears to be a fairly strong relationship between the gradient of decay of the singular

values and the gradient of the decay of the Chebyshev coefficients: in particular, the
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Figure 22: Relationship between the decays of singular values and Chebyshev

coefficients for various functions.

former appears to be roughly twice the speed of the latter on a log graph, meaning a

decay rate proportional to the square of the latter. To reformulate, we consider a function

f (x), with x ∈ [−1,1]. Now consider the (bivariate) function g(y, z) := f (y + z) for

y ∈ [−1,0], z ∈ [0,1]. We seek to show that the singular values obtained from the

representation of g(y, z) into a matrix (which is Hankel) decay at roughly squared of the

rate of the Chebyshev coefficients of the function f (x). We conjecture that this is indeed

the case given our experimentation, but ultimately leave the proof for future analysis.
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9 Conclusions

Within this thesis, we have tackled the problem of analysing similarity within time series,

particularly within the context of financial stock data. After delving into a review of the

existing work that has been done on this topic in Section 2, we began with an overview

of the data which we utilise: namely five year’s worth of ticker information from nearly

500 different tickers from the S&P 500. This data set provides not only a very applicable

real-world scenario within which to contextualise our results, but also presents real

challenges in that there are no clear-cut trends inherent to all entries within the data

set, as well as the inherent noisiness associated with financial data.

We then proceeded to discuss our main methodology for de-noising our data set:

via Singular Spectrum Analysis. We discussed the outline of the methodology and also

delve into the theoretical choice of the parameters associated with the method, justifying

our choices based on both theoretical work and experimentally validated claims. In

particular, we show how we can identify components within our model to real-world

market behaviours, thereby allowing us to identify the dominant signals which we wish

to capture and the noise which we wish to discard. Lastly, we discussed alternative

methods and links to SSA within them, and further justify our choice of SSA and why

we believe it to be the appropriate method to de-noise time series in such a context.

We then move towards answering the question of measuring similarity of two different

time series. We provide an overview of various distance-based measures, in particular

focusing on the “stiff” measure of Euclidean distance, and the “elastic measures” of

Dynamic Time Warping and the Time Warp Edit Distance. We also discuss the differences

between distances and similarity, which are often conflated in the literature and past

analyses of time series, and construct an empirical test to decide upon a choice for

similarity measure, which for our use case ends up being the Time Warp Edit Distance.

Having found a method to analyse when two time series are similar, we then go into

an analysis of two different methods to find out when two time series begin to become

dissimilar. Often neglected in similar analyses performed on time series, this question

is particularly relevant to our context if we seek to set up a strategy wherein we are

automatically able to determine when time series become similar or dissimilar, since

these events mark times when it might be optimal execute either selling or buying of

certain stocks. However, it is easy to see how this generic concept can be important in

other contexts too: such as in wanting to analyse when temperature in two locations is

similar or not to suggest strategies to deal with climate changes.

The first strategy we discuss is conceptually and computationally simple, wherein
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we simply take a moving TWED score of the normalised time series and highlight when

the score rises beyond a threshold to indicate dissimilarity. The issue with this method

arose from the fact that the moving TWED score must be normalised on a ticker-level

basis, with the normalisation depending on a qualitative examination of when the cross-

similarity of any given tickers has changed enough over a longer timescale such that

the mean and variance of the moving TWED score should be updated. In our second

strategy, via RuLSIF, we attempt to rectify this by computing the points of change of the

non-normalised moving TWED score. This then means that we are able to automatically

detect when we enter different “regimes” of similarity - but comes with the drawback

that we then require qualitative examination of when two time series are classified as

“dissimilar”.

We next introduce the notion of sector-level data into our analysis, and construct a

measure of analysis in which a given sector is represented by the tickers corresponding

to that sector. We are able to demonstrate some insights, namely that the Energy sector

is comprised of tickers which are quite dissimilar to other sectors, and that sectors such

as Finance and Information Technology display relatively high cross-similarity. Further,

using the methodologies outlined previously, we are able to discuss which tickers and

sectors are most similar to a given ticker.

We then finish off with a theoretical analysis on Hankel matrices. We show that

certain classes of time series lend themselves to low-rank embedding within these types

of matrices, and also examine the effect noise plays in the optimal SSA truncation rank;

we are able to show that if we expect even a moderate amount of noise we must perform

quite conservative rank truncations.

Lastly, we introduce a novel aspect of discussion, namely the relationship between

the decay of the Chebyshev coefficients of low-rank functions and the decay of these

functions’ trajectory matrices’ singular values. We conjecture that the latter decays are

approximately proportional to the square of the decays of the former, though we leave

the proof for future work.

9.1 Future Work

Our discussion has left much room for future work. In particular, we have opted not to

focus much on machine-learning based approaches, due to two primary issues:

1. We are lacking in pre-labelled training data with which to train supervised machine

learning models, such as Siamese Neural Networks (Hou, Jin, and Z. Zhao 2019).

Though these models have shown to be effective when compared to DTW (Pei,
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Tax, and Maaten 2016), there has not been much exploration on the performance

of these methods against either TWED or the similarity measures we discussed.

2. When running unsupervised methods such as K-Means clustering, the inherent

variations of the time series over the timespan we consider render constructing

the groupings of similar tickers very difficult.

Thus, there is room for further analysis on finding machine learning based approaches

in classifying similarity. Furthermore, there may also be alternative methods for change

point detection, such as in using algorithms alternative to RuLSIF; further exploration is

necessary to determine what is best for our scenario. There is also much examination

to be done in terms of implementing an end-to-end trading strategy using the methods

discussed (namely, taking input data, extracting signal, and tracking (dis)similarities)

and back-testing it on historical data to verify that this is indeed a viable methodology.

We can also explore the implementation of these methods on other (financial) assets: we

have currently only explored stocks, but we may wish to check (for example) commodity

prices to see if similar conclusions can be made as well.

Lastly, there is much to be explored in terms of the theoretical properties of Hankel

matrices. In Section 8.1, we have outlined several experiments which demonstrate

certain properties of noisy, low-rank time series and their embedding. However, we have

thus far been unable to provide proofs for many results, in particular the relationship

between the Chebyshev coefficients and the singular values of the trajectory matrices.

We conclude with some questions which may guide further work, both pertaining to

these theoretical discussions and ones brought up during the course of this report:

1. What exactly is the quantitative relationship between the decays of Chebyshev

coefficients of smooth functions and their corresponding induced Hankel matrix

singular values?

2. How does the rank of SSA truncation influence the reconstruction error of the

final time series for low-rank, noisy time series?

3. What is the most effective methodology to detect when similar time series become

dissimilar and vice-versa?

4. What is the best window size to set for these change point detection methods?

Can be it automatically detected even for very noisy data?

We hope that these questions are useful in seeking launching points for further avenues

of exploration.
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Appendix A Further Figures

(a) Rank 5 SSA component of TSLA reconstruction. (b) Rank 5 SSA reconstruction of TSLA.

(c) Rank 10 SSA component of TSLA reconstruction. (d) Rank 10 SSA reconstruction of TSLA.

(e) Rank 15 SSA component of TSLA reconstruction. (f) Rank 15 SSA reconstruction of TSLA.

Figure 23: Comparison of SSA components and reconstructions of different ranks for

TSLA. Note how as rank of reconstruction increases, the amplitudes of the movements

fall, and the resolution of the reconstruction increases.
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