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1 Introduction

Within mathematical finance, there are a variety of methods used to price financial assets

in order to extract utility from trades. One of the key hurdles within pricing these assets

has been in mathematically modelling the highly nonlinear and stochastic behaviour of

markets causing erratic changes in value. Driven by recent breakthroughs in computing,

it has become viable to try and implement machine-learning based tools such as neural

networks to price these assets. The goal with such approaches is to be able to then pick

out any behaviours which are too difficult to analytically describe, an approach which

has enjoyed success in many fields.

We look at the Black-Scholes-Merton (BSM) model, and use this model to train a

neural network via artificial trades generated via a binomial pricing model. We then

compare the performance of this model to a neural network trained on real data via

extracting real-world trades taken from the S&P 500 [25] (a stock index for 500 popular

US-based private corporations), with the aim of examining why one or the other might

perform better at accurately predicted asset prices.

1.1 Preliminaries

Before we delve into the bulk of our discussion let us introduce some financial terminology

[4].

1. A call is a financial option allowing the owner the right, but not obligation, to buy

the asset at a specified price at a given time. In particular, we focus on European

calls, which may only be exercised at their maturity time T , but we also briefly

discuss American calls which may be exercised any time up to their maturity time.

2. The strike price K is the fixed price at which an asset may be exercised. In the

context of calls, this is the price at which the option gives you the right to purchase

the underlying asset.

3. The risk-free-rate r is the rate of return of an asset which has zero risk. In practice

this may refer to long-term government bond rates [15].

4. Lastly, the volatility σ of an asset is a measure of the deviation in return for said

asset.

With these definitions, we look now towards our pricing models.



2 Black-Scholes-Merton Model

In order to derive the expression for the European call price within this model we follow

a similar procedure to that in [24]. We first assume the existence of an underlying asset

S (e.g. a stock) which undergoes geometric Brownian motion, and a risk-free1 asset B

(such as a government bond). We then know that we have the equations

dSt

St
= µd t +σdWt , (1)

dBt = rBt d t (2)

for a Wiener process Wt , adopting the notation that X t := X (t). We pause now to derive

Ito’s Lemma, an important result required to proceed. We follow the procedure outlined

in [16].

Lemma 1. Ito’s Lemma: The differential of a continuous, time-dependent stochastic process

f (S, t) is given by2

d f (S, t) =

�

∂ f (S, t)
∂ S

µ (S, t) +
∂ f (S, t)
∂ t

+
1
2
∂ 2 f (S, t)
∂ S2

σ2 (S, t)

�

d t

+
∂ f (S, t)
∂ S

σ (S, t) dW, (3)

where S follows a geometric Brownian process

dS = µ (S, t) d t +σ(S, t)dW (4)

associated with drift µ, volatility σ, and Wiener process W.

Proof. Before proceeding let us immediately we drop arguments for µ(S, t),σ(S, t) for

clarity. We have that

d f (S, t) =
∂ f
∂ S

dS +
∂ f
∂ t

d t. (5)

The Wiener process W by definition satisfies

dW ∼ N(0, d t), (6)

Cov(dW (t), dW (τ)) = 0 (7)

1Here “risk-free” refers to the idea that there is virtually no risk of non-payment of the value owed, as

in a government bond.
2Note that we have dropped the subscript t for clarity, but both S and W are time dependent.



for t ̸= τ. Noting that in Ito calculus we have dW 2 = d t [11], we write

∆S = µ∆t +σ∆W (8)

= µ∆t +σε
p
∆t (9)

for ε∼ N(0, 1). Then squaring and dropping higher order terms we have

∆S2 = σ2ε2∆t. (10)

Further, given ε is a standard normal distribution we have the variance V [ε] defined by

V [ε] := E
�

ε2
�

−E [ε]2 = 1 ⇒ E
�

ε2
�

= 1, (11)

where the simplification in (11) follows from the expectation of ε being 0. This then

implies that

E
�

∆tε2
�

=∆t (12)

following a simple multiplication. To calculate the variance V of ε2∆t note that

V
�

ε2∆t
�

= E
�

�

ε2∆t −E
�

ε2∆t
��2�

(13)

= E
�

�

ε2∆t −∆t
�2�

(14)

=∆t2E
��

ε2 − 1
��

(15)

=∆t2E
�

ε4 − 2ε2 + 1
�

. (16)

Noting that

E
�

ε4
�

= Cov(ε2,ε2) +E[ε2]2 = 2, (17)

we write (16) as

V
�

ε2∆t
�

=∆t2 (2− 2 · 1+ 1) =∆t2. (18)

Therefore as ∆t → 0 we have that ε2∆t → E
�

ε2∆t
�

:=∆t. Applying this result in (10)

we have that

lim
∆S,∆t→0

∆S2→ σ2d t, (19)

which we insert into

∆ f =
∂ f
∂ S
∆S +

∂ f
∂ t
∆t +

1
2
∂ 2 f
∂ S2
∆S2 +

∂ 2S
∂ S∂ t

∆S∆t +
1
2
∂ 2 f
∂ t2
∆t2 . . . (20)

to give (after ignoring higher order terms)

d f =
∂ f
∂ S

dS +
∂ f
∂ t

d t +
1
2
∂ 2 f
∂ S2
σ2d t. (21)



Substituting our expression for the Ito process (4) into (21), we finally arrive at

d f =

�

∂ f
∂ S
µ+
∂ f
∂ t
+

1
2
∂ 2 f
∂ S2
σ2

�

d t +
∂ f
∂ S
σdW. (22)

Applying Ito’s Lemma to ln(S) and ln(B) from (1)-(2), we arrive at the stochastic

differential equations (reintroducing subscripts)

d ln(St) =
�

µ−
σ2

2

�

d t +σdWt , (23)

d ln(Bt) = rd t. (24)

Following [4], we then integrate from t to T to have the solutions

S(t; T ) = S0 exp

�

�

µ−
σ2

2

�

(T − t) +σ

∫ T

t

d t Wt

�

, (25)

B(t; T ) = exp (r(T − t)) . (26)

One of the requirements for the BSM model is performance under a measure ac-

counting for no arbitrage, which necessitates a risk-neutral measure Q [24] such that the

discounted stock price dependant on B is martingale, a variable such that the conditional

expectation of the next value in a series is the present value regardless of previous

information held [26].

To this end write
dSt

St
= rd t +σdWQt (27)

where

WQt =Wt +
µ− r
σ

t, (28)

and consider the discounted price

Ŝt :=
St

Bt
, (29)

where we claim that Ŝt will be a martingale.

Applying Ito’s Lemma to Ŝt and substituting in for St and Bt , we have that

dŜt =
∂ Ŝt

∂ Bt
dBt +

∂ Ŝt

∂ St
dSt = σŜt dWQt , (30)

which when integrating from 0 to t and with
∫ t

0
dWQt =WQt has the solution

Ŝt = Ŝ0 exp
�

−
σ2

2
t +σWQt

�

. (31)



Now consider for p < t we have (with F referring to all information we know up to time

p),

EQ
�

Ŝt |Fp

�

= Ŝ0 exp
�

−
σ2

2
t
�

EQ
�

exp
�

σWQt
�

|Fp

�

(32)

= Ŝ0 exp
�

−
σ2

2
t+σWQp

�

EQ
�

exp
�

σ
�

WQt −WQp
��

|Fp

�

(33)

= Ŝ0 exp
�

−
σ2

2
t+σWQp

�

EQ
�

exp
�

σ
�

WQt−p

��

|F0

�

(34)

= Ŝ0 exp
�

−
σ2

2
t+σWQp

�

exp
�

σ2

2
(t − p)
�

(35)

= Ŝ0 exp
�

−
σ2

2
p+σWQp

�

(36)

= Ŝp, (37)

where we have added 0 with the term in green in (33), used the definition of WQ in

(34), and used the moment-generating function of a normal distribution in (35). Thus,

we have shown Ŝ to be Q-martingale.

Pricing now a call CBSM
E with time to maturity τwe have, with F being the log-normal

cumulative distribution function,

CBSM
E = exp(−rτ)EQ

�

(ST − K)+|Ft

�

(38)

= exp(−rτ)

∫ ∞

K

dF(ST ) (ST − K) (39)

= exp(−rτ)

∫ ∞

K

dF(ST ) ST − exp(−rτ)

∫ ∞

K

dF(ST ) K . (40)

With φ the cumulative distribution function of the normal distribution, the first integral

in (40) is simply
∫ ∞

K

dF(ST ) ST = EQ [ST |ST > K] = St e
rτφ (d1) , (41)

where

d1 :=
ln
�St

K

�

+
�

r + σ
2

2 τ
�

σ
p
τ

. (42)

Note that in (42) we have used the standard result for the conditional expectation

of a log-normal distribution, which can be derived as done in e.g. [6]. The crux of

the argument relies upon the fact that ST follows a log-normal distribution with mean

ln(St) +
�

r −σ2/2
�

τ and variance σ2τ, from where the result directly follows.



Proceeding, the second integral in (40) may be written as
∫ ∞

K

dF(ST ) = 1− F(K) (43)

= φ(d2), (44)

with

d2 := 1− d1 (45)

=
ln
�St

K

�

+
�

r − σ
2

2 τ
�

σ
p
τ

. (46)

With the notation in [4], we then have that in the BSM model a European call option is

priced at

CBSM
E (t, T, S, K) := Stφ(d1)− Ke−r(T−t)φ(d2). (47)

We look next at examining pricing via a binomial model. This has several advantages,

namely that it is computationally simple to implement for e.g. American options as it

allows calculation of prices during steps intermediate to the current time and expiry

time. We seek to implement this model primarily to draw comparisons against the BSM

model, and ultimately to compare with pricing via a neural network.

3 Binomial Pricing Model

The basic principle by the binomial (BM) model is outlined e.g. in [12], in which we

utilise a tree with two different branches at each node: we claim that at a given time-step

the price S may either go up to uS with probability p, or go down to dS with probability

1− p. If we assume intermediate time-steps ∆t and risk-free rate r, we wish to find the

probability p such that we may construct the previous price

CE,0 := exp (−r∆t)
�

pCup + (1− p)Cdown

�

(48)

where Cup and Cdown are the prices of the option at the next time-step assuming the

price of the underlying asset moves up or down. By successively combining these single

binary splits we are thus able to construct a tree to price a given option.

We note that (27) has the solution

St = S0 exp
�

(r −
σ2

2
)t +σWQt

�

, (49)



and so we note that in a discrete setting

St+∆t

St
= exp
��

r −
σ2

2

�

∆t +σ
�

WQt+∆t −WQt
�

�

(50)

which is distributed log-normal
�

(r − σ
2

2 )∆t,σ2∆t
�

. Then, equating our conditions on

the mean and variation of the stock price S to the mean and probability of this log-normal

distribution, which give the equations

pu+ (1− p) d = exp (r∆t) , (51)

pu2 + (1− p) d2 = exp
��

2r +σ2
�

∆t
�

. (52)

Using the conditions in the Cox-Ross-Rubinstein model that ud = 1 [8], we may then

solve for p, u, d to get

p :=
exp(r∆t)− d

u− d
, (53)

u := exp
�

σ
p
∆t
�

, (54)

d := exp
�

−σ
p
∆t
�

. (55)

We can then use our parameters p, u, d alongside (48) to derive the price of the call at a

given node in a tree:

CBM
E := exp (−rN∆t)

N
∑

i=0

�

N
i

�

pi (1− p)N−i max
�

S0uidN−i − K , 0
	

. (56)

We can now demonstrate that (56) converges to the expected formula in the BSM

model. We follow a similar procedure as in [22].

Define α to be the smallest integer such that S0uαdN−α > K, or in other words we

have

α :=

�

ln
�

K
SdN

�

ln
�

u
d

�

�

. (57)

Noting then that for all i < α the term inside the maximum in (56) is 0, and for all i > α

it is S0uαdN−α − K , we write

CBM
E = exp (−rN∆t)

N
∑

i=α

�

N
i

�

pi (1− p)N−i
�

S0uidN−i − K
�

. (58)

Expanding (58) out we have

CBM
E = S0

N
∑

i=α

�

N
i

�

pi (1− p)N−i e−rN∆tuidN−i − e−rN∆t K
N
∑

i=α

�

N
i

�

pi (1− p)N−i. (59)



We now claim that we may write the right hand side of(59) as

SΦ [α, N ; p̂]− Ke−rN∆tΦ [α, N ; p] , (60)

where Φ [n1, n2; p] is the discrete binomial cumulative distribution function (that is to

say, the probability for a successful binomial trial to occur within n1, n1 + 1 . . . n2 trials

with probability p), and

p̂ :=
up

exp (r∆t)
. (61)

Proof. The second sum in (59) is Φ [α, N , p] by definition. Considering the first sum in

(59), we write exp (r∆t) := β for simplicity, such that p̂ = up/β . Now note that

p̂i (1− p̂)N−i =
�

up
β

�i �

1−
up
β

�N−i

(62)

=
piuN

βN

�

β − up
u

�N−i

(63)

=
piui

βN
(d (1− p))N−i (64)

=
piuidN−i

βN
((1− p))N−i (65)

where in going from (63) to (64) we have used (51). Substituting this result into the

first summation in (59), and reinserting the full expression for β we have thus shown

that

CBM
E = SΦ [α, N ; p̂]− Ke−rN∆tΦ [α, N ; p] . (66)

As we take the limit of N →∞ and ∆t → 0 we can thus arrive at our expression (47),

with details of these extra steps (which involve taking limits of the discrete binomial

cumulative distribution) may be found in e.g. [8]. We can also examine this convergence

computationally, as shown in Figure 1 which demonstrates a clear inverse relationship

between total least-squares loss and depth of binomial tree.

Having now developed the binomial pricing model, we move towards developing an

understanding of neural networks as to be able to apply them to pricing calls via the

BSM model.

4 Neural Networks

In order to build up to what a neural network is we must first define an artificial neuron.

An artificial neuron (sometimes known as a unit) takes as input a vector x⃗ , bias b⃗,



Figure 1: Log-log plot of least-squares loss of the binomial pricing model against the

BSM model, for tree depths ranging from 1− 100.

weights w⃗ , and activation function f , and outputs the value of f
�

b⃗+ x⃗ · w⃗
�

[2]. The

name for this object comes from the rough relation between a biological neural which

may be “activated”. Thus, a neural network may be thought of as multiple layers of

neurons, each neuron taking as input the outputs from the neurons from the layer before

it.

We introduce some notation to expand upon this point. Denote by ai
j the j th neuron

in the i th layer of the neural network. Thus, in theory we may have many layers of

neurons giving rise to a Deep Neural Network (DNN). We present a pictorial example of

DNN in Figure 2; note the hidden layers which correspond to the neurons not visible as

either inputs or outputs from the neural network.

In simple terms, neural networks work by seeking to optimise the weights W⃗
i
for

a given layer, usually via seeking to minimise some loss function L(W⃗
i
). Standard

techniques build off the principles of gradient-descent, where we have for a general

vector x⃗

x⃗ t+1 = x⃗ t −ηg⃗ t , (67)

with g⃗ t :=∇x⃗ t
L (x⃗ ) being the gradient of the loss function, and η represents a hyperpa-

rameter known as the learning rate, i.e. the “stepsizes” between successive iterations of

weights. In practice gradient-descent presents issues when the amount of functions to be

differentiated is high (given the complexity of calculation) and so modern methods often

utilise stochastic gradient-descent based algorithms. In these methods we replace g⃗ t with

G⃗ t , a randomly chosen vector with the condition that E
�

G⃗ t

�

= g⃗ t . Realistically, when
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Figure 2: An example of a DNN with n inputs, k outputs, and three hidden layers with

m neurons per hidden layer.

we may write L (x⃗ ) =
∑

i li, we then choose G⃗ t = ∇x⃗ t
li. Stochastic gradient-descent

then reduces the computational complexity of each update step potentially by orders of

magnitude, at the cost of potentially erratic convergence [5].

We take a moment to discuss the optimisation algorithm we employ within our neural

network, Adaptive Moment Estimation (commonly referred to as Adam).

4.1 Adam

Adam seeks to implement the benefits of two recently successful algorithms, AdaGrad

and RMSProp [10], both of which utilise adaptive stepsizes. To illustrate why using

adaptive stepsizes might be desirable, consider η as an analogue for “resolution”; where

the gradient is changing rapidly we seek to capture these rapid shifts, and where the

gradient is flat we wish not to expend computational power on relatively pointless

calculations.

With all operations done element-wise and with (α)t denoting raising α to the power

t, we define the scheme as [17]



Adam: x⃗ t+1 = x⃗ t −
ηt
Æ

B⃗t+1

M⃗ t+1,



































m⃗ t+1 = β1m⃗ t + (1− β1) g⃗ t ,

b⃗t+1 = β2 b⃗t + (1− β2) g⃗
2
t ,

M⃗ t+1 =
m⃗ t+1

1− (β1)t
,

B⃗t+1 =
b⃗t+1

1− (β2)t
,

(68)

with m⃗0 = b⃗0 = 0, ηt being the stepsize (which is sometimes set to ηt := η/
p

t), and

β1,β2 ∈ [0,1);he naming of the scheme “Adaptive Moment Estimation” arises from the

utilisation of both the first and second moments of the gradient g⃗ t . The key facet of

the method is within the ratio ∆t+1 := M⃗ t+1/
Æ

B⃗t+1 which may be thought of as a very

loose analogue of the “average” gradient over the “deviation” of the gradient. When

the variance in the gradient is high ∆t+1 shrinks (leading to finer resolution in step

direction), and vice-versa when the variance in gradient is large. While it is known that

Adam does not always converge to an optimal solution, proposed alternative methods

such as AMSGrad do not necessarily give better results in practical contexts [13], and so

Adam continues to be widely used.

We also discuss in brief the activation function we use in our neurons.

4.2 Rectified Linear Activation Function

An issue inherent to many activation functions such as the sigmoid, where f (x) =

(1+ e−x)−1, is saturation. Saturation refers to the phenomenon in which the gradients

of the activation functions are very flat, which means that for a small perturbation of

input, the output of the neuron does not change much - potentially trapping the neuron

in some sub-optimal parameter region. To account for this we utilise the rectified linear

activation function, commonly referred to as ReLU, which is defined as f (x) =max (0, x)

[2]. A visual comparison between ReLU and sigmoid activation functions is shown in

Figure 3. Note how the gradient for the sigmoid is approximately zero for all points

except around a small region near the origin, whereas with the ReLU we avoid saturation

on half the real line, often leading to better performance experimentally than other

activation functions.

With these tools in place, we now turn towards implementing a call option pricing

model via neural networks.



Figure 3: Comparison of the sigmoid and ReLU activation functions for x ∈ [−6,6].

5 Implementation

5.1 Dataset

We consider data from the S&P 500, for non-dividend paying American calls (which we

know from e.g. [3] are priced the same as European calls). The dataset was scraped

from Yahoo Finance [28] over three days, with information on implied volatility coming

from AlphaQuery [1], and has information on 13, 669 options gathered over this period.

We present some information on the dataset in Table 1.

Parameter: C ($) S ($) K ($) τ (Y) σ

Range: 0− 541 3− 1475 1− 1710 0.004− 3.034 0.163− 0.666

Mean: 28 194 218 0.472 0.378

Variance: 2200 25249 40280 0.332 0.011

Table 1: Parameters gathered from 13,669 trades taken from the S&P 500 over three

days in March 2023.

We split the dataset into a 81% : 9% : 10% training-to-validation-to-testing split such

that we aim to prevent over-fitting of our model (via comparing our models’ performance

to the validation set whilst still training), and also leave an unseen dataset to ultimately

compare our model against once training has been completed. Furthermore, we use a

feature of the BSM model wherein we can divide (47) by K to attain what we dub the

“normalised” call price. This step is useful as we then reduce the number of “features”



(or variables) we seek to fit via our neural network as we can then seek to fit St/K rather

than both St and K; this in turns reduces the computational complexity of our problem.

5.2 Models

Before proceeding, let us introduce some notation to aid us in defining the models we

use.

• Cscrape: The set of call prices for the scraped option data.

• Dscrape: The set of tuples of parameters (St , K ,τ,σ, r) for the scraped option data.

• Cbinom: The set of predicted prices generated when each tuple in Dscrape is fed into

the binomial model ran for N steps, as outlined in (56).

We attempt to generate two different neural networks:

1. The “stock” model, which is trained using data from Dscrape and Cscrape, and outputs

predicted prices when given some option parameters D.

2. The “binomial” model, which is trained using data from Dscrape and Cbinom, and

outputs predicted prices when given some option parameters D.

For both these models, we utilise a least-squares loss function

L(C̃) :=
1

2m

m
∑

i=1

(C̃i − Cscrape,i)
2 (69)

whilst training the models, with C̃i a single prediction on a call within the entire array

C̃ of call predictions, for a given model. Note that we discuss performance in both

cases against Cscrape as we wish to compare how either method of training a model fares

against real-life trades.

Immediately an issue is raised wherein we must make a choice to truncate the sum

in (56) to some arbitrary N . We choose a depth of tree of 50, which we justify via the

consideration of time of generation for the price, which is shown in Figure 4; a depth of

50 leads to a time of generation less than 100ms which we set as our benchmark.

We train using a neural network four layers deep with 100 neurons in each layer,

and train for 100 iterations with early stopping enabled to prevent over-fitting if the

validation score plateaus; this ends up being a sensible decision as justified by Figure

5. Here we see stopping for the binomial model before 20 iterations and for the stock

model before 35 iterations. Note that in both cases the validation curves, that is to



Figure 4: Comparison of time to gener-

ate call price using the binomial model for

trees ranging between 1−100 nodes deep.

Figure 5: Comparison of validation scores

against training iteration for the stock and

binomial models.

say the R2 values for the models’ predictions to the validation dataset, plateau near 1.

Further, note that the binomial model seems to give somewhat better validation scores.

This is as we expect since the validation score is a representation of how well the

neural network captures the underlying information within the model, and the binomial

model (which itself is an abstraction of the BSM model) is a simplified representation of

how we expect real-world calls to behave. It is thus natural that there will be behaviours

(such as erratically priced calls) which the BSM model is not able to capture. Note

at this point that we see an R2 for the binomial and stock models of 0.986 and 0.988

respectively on the training data, showing good fitting.

6 Results

We present our results in Figure 6. We note that the stock model tends to under-price

in the money3 (ITM) calls and over-price out-of-the-money (OTM) calls (with the over-

pricing behaviour significantly worse as actual price drops), whereas the binomial model

has a much more even dispersion of pricing for both cases. Nevertheless, we actually

see that the binomial model performs slightly worse than the stock model: we see an R2

of 0.952 and 0.953 on predictions versus testing data for the two models respectively.

However, this result is promising as it demonstrates both models perform reasonably

well on European call data; this is demonstrated further in Figure 6(c) which shows

good adherence to the perfect prediction line for both models.

We also note that in general, both models seem to predict ITM calls worse than they

3Where S > K .



(a) Prediction comparison for stock model. (b) Prediction comparison for binomial model.

(c) Prediction comparison for both models.

Figure 6: Comparison of predicted and actual prices via neural networks trained.

do OTM calls, which can be shown in Figures 6(a) and 6(b) by both the ITM predictions

lying below the perfect prediction line. Given we are using a log-log scale this erroneous

prediction might instead demonstrate difficulties in pricing very highly valued assets,

which lines up with the discussion above on under-pricing ITM calls.

We can also examine the errors in more detail as shown in Figure 7. Figure 7(a)

demonstrates well how both models tend to under-price ITM calls slightly, and Figure

7(b) demonstrates how the stock model over-prices OTM calls more than the binomial

model. However, we can also see from this figure that the binomial model also presents

more skewed results in pricing, which is perhaps better illustrated in Figure 7(c).

Examining the errors for all calls in more detail, consider Table 2 where we present

some parameters for both the stock and binomial models, and where we use kurtosis



(a) Price prediction comparison for ITM calls. (b) Price prediction comparison for OTM calls.

(c) Price prediction comparison for all calls.

Figure 7: Comparison of pricing errors for the binomial and stock neural networks.

defined as the excess kurtosis [20]

K(x) := E
�

� x −µ
σ

�4�

− 3 (70)

as the measure of tailed-ness of our errors.

Parameter: Mean ($) Variance ($2) Skew Kurtosis

Stock Model: −0.0193 0.0245 −1.5678 96.9448

Binomial Model: 0.0020 0.0258 6.7271 143.5688

Table 2: Comparison of pricing errors in the stock and binomial neural network models

via various statistical parameters.

Note in particular that the stock model outperforms the binomial model in every

metric (significantly so in the skewness and kurtosis). This is as we expect: the stock



model is more likely to pick up inherent features to call pricing that the BSM model

(and thus the binomial model) simply does not account for. An example of this could

be seen in its treatment of price fluctuations; the BSM model assumes Gaussian jumps

which empirically we know to not be a true representation of price variation (hence

the proposal of models such as Merton’s Jump Diffusion which seek to incorporate this

behaviour [19]).

Nevertheless, given the means of the errors on both models are very similar (and that

these values are also relatively low given that the mean and variance for the normalised

call price on the testing dataset are 0.2678$ and 0.5351$2 respectively), we see that

both models are reasonably effective at pricing European call options but that the stock

model trained on actual data slightly outperforms.

In theory, we could extend this examination to consider further types of options (such

as Americans which may be executed at time t ≤ T) but we expect that regardless of the

model used a model trained on stock data should outperform any other model utilising

some set of assumptions. This is, of course, provided we adequately train our models

which necessitates further exploration into how much data is required to adequately

train our models to some desired degree.

We expect this inherent advantage in models trained on stock data as we expect such

a model to gather “insight” into how prices fluctuate without any erroneous simplifying

assumptions which would render price predictions incorrect.

Nevertheless, we have shown promising results for neural network-based pricing

for options given that we have trained on only a few thousand options. Given recent

advances in computational power and optimisation algorithms, amelioration of these

results provided more data and potentially better optimised networks is very likely.

7 Conclusions

We have examined the pricing of European call options via computational methods via

neural networks. We have first developed an approach towards pricing these calls via

an analytic expression and then found a computational approximation of this model via

the binomial pricing model for options. Further, we have demonstrated that a neural

network trained on data gathered via assuming that a binomial pricing model gives

accurate results but slightly under-performs a similar neural network trained instead on

actual asset trades.

Furthermore we have also demonstrated some flaws inherent to the BSM model



wherein it cannot accurately account for pricing of calls due to factors such as the

assumption of constant volatility and log-normal distributions within stock prices, which

we propose that a neural network trained on actual data is able to slightly better infer,

and so better price European calls.

We have also demonstrated that both of these models can clearly be extended towards

other use-cases such as in examining American options, or in the case of the neural

network trained on actual data, other exotic options as well.

In further examination of computational pricing models we propose that data be

taken over a wider time-frame (given the current limitation of data taken over three

days) and from a wider array of sources rather than from a single index. Given the wide

applicability of neural networks an extension in this manner should be able to provide

reasonable results in terms of pricing options, though further exploration is necessary in

this direction to make concrete claims.
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