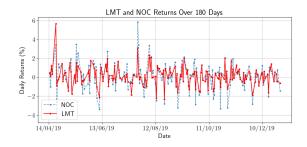
Similarity Analysis in Financial Time Series

Zella Baig zella.baig@maths.ox.ac.uk

Supervisors : Mohsin Javed (BlackRock) Yuji Nakatsukasa (University of Oxford)

Introduction



- Problem: We wish to extract some measure of "similarity" between stocks, but they are noisy. Can we separate noise and signal?
- ► A possible solution: Singular Spectrum Analysis (SSA).

Consider¹ a time series of observations $Z_T = (z_1, \ldots z_T)$. With fixed window length L and with K := T - L + 1:

1. Construct the (Hankel) trajectory matrix:

$$\mathbf{X} := \begin{bmatrix} z_1 & z_2 & z_3 & \dots & z_K \\ z_2 & z_3 & z_4 & \dots & z_{K+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z_L & z_{L+1} & z_{L+2} & \dots & z_T \end{bmatrix}$$
(1)

3

¹Hassani, Mahmoudvand, et al. 2011.

2. Compute the singular value decomposition (SVD) of \mathbf{X} :

$$\mathbf{X} = \sum_{i=1}^{n} u_i v_i^T \sigma_i$$

3. Truncate the SVD to r rank-1 matrices, with rank r chosen s.t. $r \leq n$:

$$\mathbf{X} \approx \mathcal{X} = \sum_{i=1}^{'} u_i v_i^T \sigma_i$$

4. \mathcal{X} is not necessarily Hankel, so re-diagonalise on the off-diagonals to reconstruct a de-noised series $\bar{Z}_T = (\bar{z}_1, \dots \bar{z}_T)$ from the averaged Hankel matrix

$$\bar{\mathbf{X}} := \begin{bmatrix} \bar{z}_1 & \bar{z}_2 & \bar{z}_3 & \dots & \bar{z}_K \\ \bar{z}_2 & \bar{z}_3 & \bar{z}_4 & \dots & \bar{z}_{K+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \bar{z}_L & \bar{z}_{L+1} & \bar{z}_{L+2} & \dots & \bar{z}_T \end{bmatrix}$$

(2)

SSA Intuition: Image Approximation

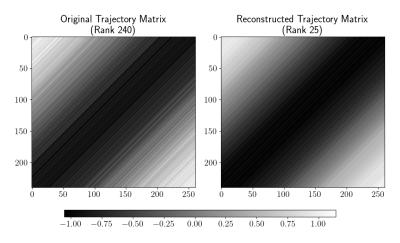


Figure 1: Noisy sinusoidal signal and denoised signals' trajectory matrices.

Choosing Parameters: Setting r

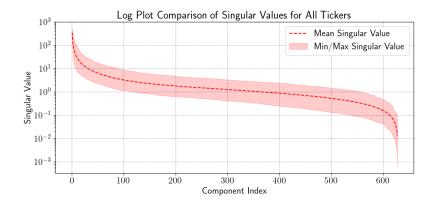


Figure 2: Choose r via examination of the scree plot, with knee at $r \approx 25$.

We measure similarity of two time (de-noised) time series using the Time Warped Edit Distance² (TWED). Why?

- 1. Cointegration v.s. correlation.
- 2. Elasticity
- 3. (Relatively) cheap

TWED: Graphical Example

1	∞	18	17	16
$Y_T 1$	∞	13	12	13
9	∞	4	13	14
	0	∞	∞	∞
		5	-3	1
			X_T	

Figure 3: Populated TWED grid, with $\nu = \lambda = 0.5$. $D_{T,T} = 16$.

SSA Reconstruction Rank Dependancy

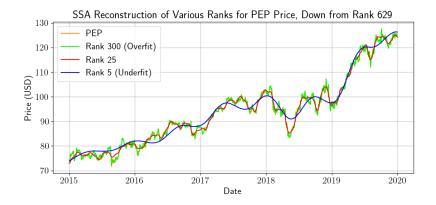


Figure 4: Different rank SSA reconstructions. Note underfitting at r = 5, and overfitting at r = 300.

Dissimilarity Location

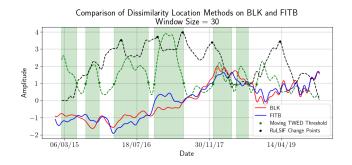
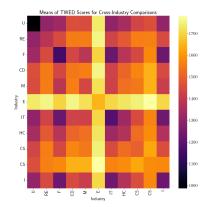


Figure 5: Implementation on our two dissimilarity finding methods on BLK and FITB over five years.

Inter-Industry Similarity (Mean)

Key takeaways:

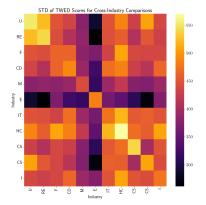
- Energy, Consumer
 Staples sector
 dissimilar to
 other sectors.
- Utilities, Finance, IT show strong intersimilarity.

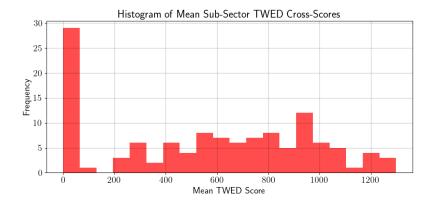


Inter-Industry Similarity (StDev)

Key takeaways:

- Energy sector conclusions strong.
- Utilities, Health Care conclusion very weak.





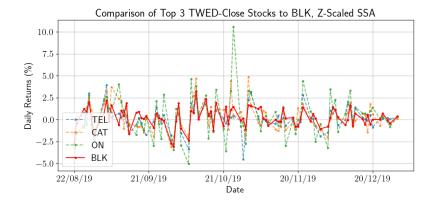
Back to Choosing a Similarity Measure

Similar Tickers | Top Five Tickers by Similarity Method

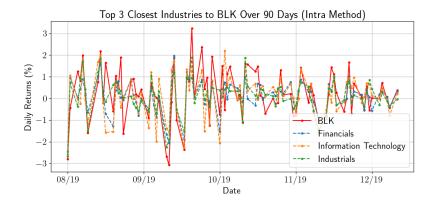
TIC ₁	d_E	d_{DTW}	d_{TWED}	
	TIC ₁	TIC_2	TIC_7	
TIC_{2}	TIC_{23}	TIC_{11}	TIC_{99}	
TIC_2 TIC_3	TIC_2	TIC_8	TIC_3	
110_3	TIC_{366}	TIC_{223}	TIC_{23}	
	TIC ₃	TIC_3	TIC_7	

Table 1: Example scoring method used to help choose a similarity measure.

Ticker Similarity for BLK

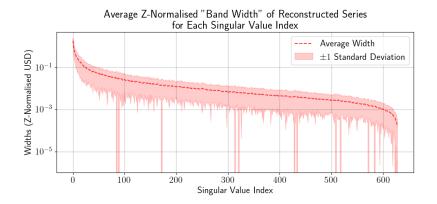


Sector Similarity for BLK

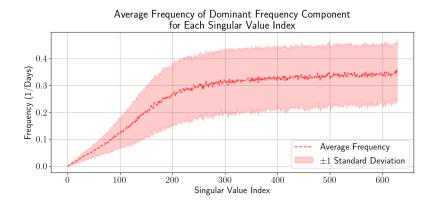


Example pairs of (potentially surprising!) similar tickers:

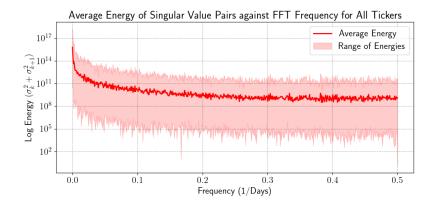
- ► Visa/Microsoft (Financials/IT)
- ► Mastercard/Intuit (Financials/IT)
- ► MSCI/Cintas (Financials/Industrials)
- ► TransDigm/FICO (Industrials/IT)
- ► Steris/CoStar (Health Care/Industrials)



Singular Value Frequency Decomposition



Singular Value Energy/Frequency Relationship



- ▶ Proper orthogonal decomposition
- ► Similarity v.s. distance
- series_scorer: A Python package for multiple time series scoring.
- ▶ Back testing!

Thank you!

zella.baig@maths.ox.ac.uk

Bibliography I

- Dey, S.; Dutta, A.; Toledo, J. I.; Ghosh, S. K.; Llados, J.; Pal, U. SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification, Number: arXiv:1707.02131, 2017.
- (2) Ghodsi, M.; Hassani, H.; Rahmani, D.; Silva, E. S. Journal of Applied Statistics 2018, 45, Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/02664763.2017.1401050, 1872–1899.
- (3) Hassani, H.; Kalantari, M.; Yarmohammadi, M. Comptes Rendus Mathematique 2017, 355, 1026–1036.
- (4) Hassani, H.; Mahmoudvand, R.; Zokaei, M. Comptes Rendus Mathematique 2011, 349, 987–990.

- (5) Hou, L.; Jin, X.; Zhao, Z. In 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019, pp 1–6.
- (6) Marteau, P.-F. Time Warp Edit Distance, Number: arXiv:0802.3522, 2008.
- (7) Serrà, J.; Arcos, J. L. *Knowledge-Based Systems* **2014**, *67*, 305–314.

Siamese Neural Networks

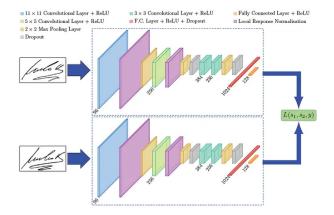


Figure 6: Overview of an SNN, as used in SigNet³.

 3 Dey et al. 2017.

There exist two different types of SSA forecasting: recurrent, and vector. We go over them in turn:

1. Recurrent forecasting⁴: Consider the left singular vectors $u_1, u_2, \ldots u_r$. Take their L^{th} components, denoted π_i , and define

$$v^2 := \sum_{i=1}^r \pi_i^2.$$
 (3)

Denote by \hat{u}_i the $L - 1 \times 1$ vector which is u_i with the final component removed.

⁴Ghodsi et al. 2018.

Then define

$$A = (\alpha_{L-1}, \dots, \alpha_1)^T = \frac{1}{1 - v^2} \sum_{i=1}^r \pi_i \hat{u}_i,$$

and thus construct

$$z_t = \begin{cases} \bar{z}_t & t = 1, \dots T, \\ \sum_{i=1}^{L-1} \alpha_i z_{t-i} & t = T+1, \dots T+h, \end{cases}$$

for a forecast to h steps ahead.

SSA Forecasting: Vector Forecasting

2. Vector forecasting⁵: First define

$$\mathbf{\hat{U}}=\left[\hat{u}_{1},\ldots\hat{u}_{r}\right],$$

and construct

$$\mathbf{\Pi} = \mathbf{\hat{U}}\mathbf{\hat{U}}^T + (1 - v^2)AA^T.$$

Finally, construct the operator Θ s.t.

$$\Theta V := \begin{bmatrix} \mathbf{\Pi} \hat{V} \\ A^T \hat{V} \end{bmatrix},$$

where \hat{V} denotes the vector V with the last element removed.

 5 Ghodsi et al. 2018.

Define now

$$\Xi_i = \begin{cases} \mathcal{X}_i & i = 1, \dots K, \\ \Theta \Xi_{i-1} & i = K+1, \dots K+h+L-1, \end{cases}$$

where \mathcal{X}_i are the columns of \mathcal{X} . Next construct

$$\boldsymbol{\Xi} = \left[\Xi_1, \ldots \Xi_{K+h+L-1}\right],$$

and hankelise to get the matrix $\bar{\Xi}$ from which we recover an "extended" time series containing forecasted values.

