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Introduction 2
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» Problem: We wish to extract some measure of “similarity”
between stocks, but they are noisy. Can we seperate noise
and signal?

» A possible solution: Singular Spectrum Analysis (SSA).




Outline of SSA: Constructing the Hankel Matrix 3
——

Consider! a time series of observations Zp = (z1,...27). With
fixed window length L and with K :=T — L + 1:

1. Construct the (Hankel) trajectory matrix:

Z1 Z9 z3 e ZK
Z92 z3 Z4 cee RKH1

X:=|. . (1)
2L RL+1 RL+2 .- T
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'Hassani, Mahmoudvand, et al. 2011.



Outline of SSA: Taking a Low-Rank Approximation 4
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2. Compute the singular value decomposition (SVD) of X:

n
§ : T

X = Uiv; 0;
=1

3. Truncate the SVD to r rank-1 matrices, with rank r chosen
s.t. r<n:
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Outline of SSA: Hankelising the Approximation 5
—

4. X is not necessarily Hankel, so re-diagonalise on the
off-diagonals to reconstruct a de-noised series

Zr = (#1,...2r) from the averaged Hankel matrix
Z1 22 z3 - ZK
_ 22 Z3 Z4 oo ZK41
X .= (2)

ZI, ZL+41 ZL4+2 --- 2T
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SSA Intuition: Image Approximation 6
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Reconstructed Trajectory Matrix
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Figure 1: Noisy sinusoidal signal and denoised signals’ trajectory
matrices.
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Choosing Parameters: Setting r 7
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Log Plot Comparison of Singular Values for All Tickers
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Figure 2: Choose r via examination of the scree plot, with knee at
r /2 25.
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TWED: Measuring Similarity 8
—

We measure similarity of two time (de-noised) time series using
the Time Warped Edit Distance? (TWED). Why?

1. Cointegration v.s. correlation.
2. Elasticity
3. (Relatively) cheap

) UNIVERSITY OF

2Marteau 2008.



TWED: Graphical Example 9
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Figure 3: Populated TWED grid, with v = A = 0.5. Dy = 16.
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SSA Reconstruction Rank Dependancy 10
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SSA Reconstruction of Various Ranks for PEP Price, Down from Rank 629
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Figure 4: Different rank SSA reconstructions. Note underfitting at
r =5, and overfitting at » = 300.
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Dissimilarity Location 11
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Comparison of Dissimilarity Location Methods on BLK and FITB
Window Size = 30
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Figure 5: Implementation on our two dissimilarity finding methods on
BLK and FITB over five years.
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Inter-Industry Similarity (Mean) 12
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Key takeaways:
Means of TWED Scores for Cross-Industry Comparisons

» Energy,
Consumer "
Staples sector .
dissimilar to
other sectors. |

Industry

Industry

» Utilities,
Finance, IT
show strong
inter-
similarity.
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Inter-Industry Similarity (StDev) 13
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STD of TWED Scores for Cross-Industry Comparisons

Key takeaways:
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» Energy sector
conclusions
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» Utilities,
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Sub-Sector Cross Scores
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Back to Choosing a Similarity Measure 15
—

Similar Tickers ‘ Top Five Tickers by Similarity Method

dp dprw | drwEeD
TIC, | TIC, | TIC
Egl TICs3 | TIC;; | TICe
- 02 TIC, | TICg | TICs
3 TICs366 | TIC993 | TICss3
TIC; | TIC; | TIC,

Table 1: Example scoring method used to help choose a similarity
measure.
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Ticker Similarity for BLK 16
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Comparison of Top 3 TWED-Close Stocks to BLK, Z-Scaled SSA
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Sector Similarity for BLK 17
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Top 3 Closest Industries to BLK Over 90 Days (Intra Method)
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Similar Pairs 18

—

Example pairs of (potentially surprising!) similar tickers:
» Visa/Microsoft (Financials/IT)

Mastercard /Intuit (Financials/IT)

MSCI/Cintas (Financials/Industrials)

TransDigm/FICO (Industrials/IT)

>
>
>
» Steris/CoStar (Health Care/Industrials)
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Band Width 19
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Average Z-Normalised "Band Width" of Reconstructed Series
for Each Singular Value Index
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Singular Value Frequency Decomposition 20

Average Frequency of Dominant Frequency Component
for Each Singular Value Index
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Singular Value Energy/Frequency Relationship 21

Average Energy of Singular Value Pairs against FFT Frequency for All Tickers
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Other Points of Note 22
—

» Proper orthogonal decomposition
» Similarity v.s. distance

» series_scorer: A Python package for multiple time series
scoring.

» Back testing!
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Thank you!

zella.baig@maths.ox.ac.uk
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Siamese Neural Networks 26
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11 x 11 Convolutional Layer + RaLU 3% 3 Convolutional Layer 4+ ReLU Fully Connectad Layer + ReLU
5% 5 Convolutional Layer 4 ReLU F.C. Layer 4 ReL.U + Dropout Lacal Response Normalisation

2% 2 Max Pooling Layer
Dropout

L(s1, 52.)

3Dey et al. 2017.



SSA Forecasting: Recurrent Forecasting 27

—

There exist two different types of SSA forecasting: recurrent,
and vector. We go over them in turn:

1. Recurrent forecasting®: Consider the left singular vectors
w1, us, ... u.. Take their L*" components, denoted 7;, and

define .
v? = Z 2. (3)
i=1

Denote by u; the L — 1 x 1 vector which is u; with the final
component removed.

UNIVERSITY OF

4Ghodsi et al. 2018.



SSA Forecasting: Recurrent Forecasting 28

—

Then define

I -
A= (OzL_l, .. .Oq)T = 12 Zﬂ'ﬂiia
=1

and thus construct
Z t=1,...T,
Zt =

L—1
> aizn;  t=T+1,..T+h,
i=1

for a forecast to h steps ahead.
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SSA Forecasting: Vector Forecasting 29

—

2. Vector forecasting®: First define

and construct
I =007+ (1-0%) AAT.

Finally, construct the operator © s.t.

v

oV = A

bt

where V denotes the vector V with the last element
removed.
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SSA Forecasting: Vector Forecasting 30

—

Define now

- X i=1,...K,
U leE.  i=K+1,...K+h+L-1,

where X are the columns of X'. Next construct
E=[21,...Ekth+i-1],

and hankelise to get the matrix E from which we recover an
“extended” time series containing forecasted values.
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