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1 Introduction

Batteries are ubiquitous in modern society and demand for them is ever growing, with

an expected ∼ 30% increase year on year until 2030 [4]. Naturally, there arise many

contexts in which modelling the behaviour of a battery is desirable, such as the usage of

electric vehicles where planning a route around charging stations is needed. We seek to

construct and implement a model for a battery and apply it to precisely such a scenario,

namely seeking an optimal usage profile for an electric vehicle for a given constrained

driving problem (that is to say, given a set journey with certain constraints). We hope

that the results and insights gathered from this toy model could be readily extended to

further applications.

We split our approach into two broad contexts: performance, and degradation.

Performance is concerned with how the battery behaves under given conditions, and

degradation is concerned with how the battery capacity degrades over time. The justifi-

cation for such an approach arises from the ideas that

1. Ideally, we want to use (or extract utility from) our batteries as much as possible

for a given context,

2. All batteries die at some point, which limits how much utility we can extract from

them.

With these points in mind, we seek to both construct and apply our models.

2 Preliminaries

2.1 Mathematical Models

There exist two broad approaches to mathematically model battery behaviour: equivalent

circuit models (ECMs), and physical models [13]. Broadly speaking, the former approach

seeks to replicate the observed behaviour of batteries with “fictional” idealised circuit

parameters, such as an ideal voltage source which might be coupled with a resistor to

showcase the (observed) internal resistance of a cell. With a sufficiently complex model

as to account for observed battery data for a given scenario, the hope is that ECMs then

allow for relatively simple and computationally cheap modelling of batteries without

needing to account for any physical behaviour occurring within the cells themselves.

On the other hand, physical models seek to accurately model the electrochemical

processes occurring within batteries. Naturally, these give more accurate results as they



allow for a more cohesive view of what effects occur in batteries as opposed to ECMs

which only offer simplified parameters that give the expected observations. The key

drawback with physical models, however, lies within the complexity of such models.

Modelling minute physical changes is necessarily more complex than considering a few

discrete idealised circuit parameters, and these costs increase significantly in any context

in which we require rapid modelling (such as in on-board computers).

Thus, seeking to implement the simplest and “cheapest” possible model of a battery

for our scenario, we seek to utilise an ECM. However, before we do so, we pause to

introduce the specific cell that we seek to model. Note that we constrain ourselves to

modelling a specific cell with the goal producing as realistic of an analysis as possible,

but much of the approach we utilise may be readily extended to other cells.

2.2 Battery Data

The specific cell that we model is a Panasonic 18650PF Lithium-Ion (Li-Ion) battery, a

rechargeable cell with a maximum capacity of 2.9 Ah, and maximum rated current of

10 A [8]. This cell was chosen for two primary reasons:

1. Li-Ion cells are an incredibly common type of battery for many purposes (notably

electric vehicles) [9].

2. This cell has a comprehensive dataset with Hybrid Pulse Power Characterisation

(HPPC) curves, which give values for different parameters of the cell (such as

voltage) for a given current (or power) profile [5], and information on capacity

degradation over time [8].

The existence of the HPPC curves for this cell is crucial in constructing an appropriate

ECM for our battery: if we have information on how the cell actually performs for a

given input profile and we have some model which roughly mimics this behaviour, we

would then be able to perform a simple optimisation routine on our model to determine

what values our circuit parameters take.

The HPPC tests for our cell consist of 20 different pulses of current, performed at

increments of 5% state of charge (s), which is a dimensionless parameter defined by

s(t) = s(t0)−
∫ t

t0

d t
I(t)
Q(t)

, (1)

with I(t) being the elapsed current (with discharging corresponding to a positive current),

and Q(t) being the capacity of the cell at time t. Intuitively, s = 1 corresponds to a fully

charged cell, and s = 0 corresponds to a depleted cell.



2.3 Equivalent Circuit Model

We examine the HPPC pulse given in Figure 1. We use the justification that the voltage

response for a fixed current strongly resembles that of an RC circuit charge-discharge

pulse to then guide the construction of our ECM.

Figure 1: A single current pulse applied to our cell with the corresponding voltage

response in time.

Noting also that we observe a voltage drop below the rated voltage of our cell when

a given load is attached, we seek to construct an ECM of the form given in Figure 2.

Discussing each facet of the model in turn, we have:

• The ideal voltage source VOC , connected in series with the resistor R0 which denotes

the internal resistance of the cell.

• A parallel RC pair (R1C1) connected in series with the internal resistance and open

circuit voltage, which provides the appropriate charge-discharge behaviour with a

corresponding voltage drop V1.

• The total current draw I(t) with the relation I = IC1
+ IR1

via Kirchhoff’s Current

Law (KCL).

• The total voltage draw V (t) with the relation V = VOC − V0 − V1, via Kirchhoff’s

Voltage Law (KVL).

Further, we readily observe from the HPPC data that there seems to be some depen-

dence on s for our ECM parameters, which can be shown in Figure 3. We can perform

a simple curve-fitting procedure to construct polynomials (given in Appendix A) to

represent the behaviour of parameter values as functions of s(t).
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Figure 2: ECM to describe voltage behaviour for a pulsed current.

(a) Fit of R0 as a function of state of charge. (b) Fit of R1 as a function of state of charge.

Figure 3: Example fits of ECM parameters as a function of state of charge s(t).

We follow the procedure outlined in [13] to now construct the system of equations

for our ECM, and so we first re-express our voltage conservation equation as

V (s, t) = VOC (s)− R1(s)IR1
(t)− R0(s)I(t). (2)

Next, by dropping all explicit dependence on all variables in the arguments and with Ȧ

denoting the rate of change with respect to time, we have

V̇C1
=

IC1

C1
,

VC1
= V1 = R1IR1

,

(3)

(4)



and thus rearranging KCL we have:

IR1
+ IC1

= I ,

IR1
+ C1V̇C1

= I ,

C1R1 İR1
= I − IR1

,

İR1
=

I
R1C1
−

IR1

R1C1
.

(5)

(6)

(7)

(8)

Then, using (1), (2), (8), and the relationship P = IV we can construct an initial

system of equations to be solved, assuming a constant capacity over time, for battery per-

formance for a given input profile (noting that we re-introduce all variable dependence

for clarity):

EC M0



































ṡ(t) = −
I(t)
Q

V (s, t) = VOC (s)− R1(s)IR1
(s, t)− R0(s)I(t)

İR1
(s, t) =

I(t)
R1(s)C1(s)

−
IR1
(s, t)

R1(s)C1(s)

P(t) = I(t)V (s, t)

(9)

(10)

(11)

(12)

At this point, the key fault in our model EC M0 is the assumption that capacity

Q remains constant in (9), and so we turn towards developing a model for capacity

degradation.

2.4 Capacity Degradation

Literature suggests that we observe two types of degradation effects within batteries

[12]:

1. Calendar ageing, which occurs independently of any usage over the span of weeks

and months.

2. Cycle ageing, which occurs as a result of drawing current from the battery during

usage.

We use the term “cycle” to refer in this context to a discrete variable, with one cycle

corresponding to one complete discharge and charge of battery1 , regardless of the

1Note that we can easily extend cycles to be a continuous variable by referring to fractional cycles. For

example 2.5 cycles would refer to enough current having been drawn from the battery to deplete it and

charge it twice over, and then deplete it once again.



time frame of the discharge. The main underpinning of our approach towards capacity

degradation is the utilisation of this fact. Namely, knowing that calendar ageing occurs

over long time frames and cycle ageing is very likely to occur on much shorter time

frames (over the span of minutes or hours), we can linearise any expression we have for

capacity degradation in these two variables. We thus posit a degradation function of the

form

∆Q(t) = −(∆Q)cal − (∆Q)c ycle . (13)

2.4.1 Calendar Degradation

Focusing on calendar degradation first, we motivate our degradation through the obser-

vation of several behaviours [16]:

• From the battery data sheet we know that we observe a linear capacity degradation

with time [11].

• There is an optimal state of charge to store the battery at, at roughly s ≈ 0.4 [10].

• There exists some sort of penalty effect wherein using an older battery is worse

for capacity fade than using a new battery, and that this penalty effect is lessened

when within a (cell-dependent) range of s [16].

As such, we postulate that our calendar degradation function behaves as
�

∂Q
∂ t

�

c,s,I
= −m1 f (s),

�

∂Q
∂ s

�

c,t,I
= −m2 g(s)t,

(14)

(15)

with m1, m2 positive constants, and f (s), g(s) some convex non-negative functions with

min g(s) = 0,min f (s) = 1 such that we introduce penalties outside optimal state of

charge values with g(s), and steepen the linear decrease with time outside the optimal

state of charge value with f (s). Here, (14) represents the of linear decrease of capacity

over time with the coefficient m1 being found from the data sheet (which lists capacity

fade at three months, which we extrapolate from), and the function f (s) is chosen to be

f (s)∼ cosh(s), scaled appropriately to give a minimum at s = 0.4.

The penalty effect (15) presented slightly more of a challenge wherein we did not

have precise data for our battery on how this function behaves. As such, we chose to

model this effect with the constraint2 that m2 g(s) = m1

�

�

�

d f
ds

�

�

�, once again fulfilling the

2This constraint is chosen such that we may ultimately write the calendar degradation function in a

form resembling an integral of a total derivative.



criteria we desire. To illustrate the effect of this penalty function further, consider Figure

4 which plots ∂Q
∂ s for two different time values, with an “old” battery shown in green,

and a “new” battery shown in red.

Figure 4: Analysis of calendar ageing “penalty functions” for two different ages of

battery.

Assuming we do not wish to go below a certain degradation, shown in the blue

dashed line, the range of effective states of charge we can keep the battery at are shown

in the regions lying above the blue line; the “new” battery can operate at any state of

charge under s ≈ 0.8, while the “old” battery has a much narrower range of acceptable s

values, lying roughly between 0.1 and 0.6. Thus, we can define (∆Q)cal as the calendar

ageing factor Fcal

(∆Q)cal := Fcal(t, s) =

∫

d t

�

�

∂Q
∂ s

�

c,t,I

�

�

�

�

ds
d t

�

�

�

�

+
�

∂Q
∂ t

�

c,s,I

�

, (16)

where the absolute sign on ds
d t arises from the fact that we seek to model charging as

also incurring a degradation cost, and so the rate of change of s may be either positive

or negative. We would like to draw attention to the fact that the “penalty effect” term
�

∂Q
∂ s

�

is multiplied by
�

�

ds
d t

�

� in (16). The effect of this term is such that we only “see” the

penalty effect once we use the battery, i.e. when the state of charge is changing via

current being drawn or inputted. In other words, this effect is unseen if no current is

being drawn from the battery, but we expect (as this term is proportional to t) that as

t →∞ for this term to dominate any ageing effects when the battery is in use. Having

found an expression for calendar degradation, we move now towards discussing cycle

degradation of capacity.



2.4.2 Cycle Degradation

It is known that cycle ageing in batteries displays linear behaviour until what is commonly

referred to as the knee point, at which we see a sharp decrease in capacity with cycles in

a highly non-linear fashion [14]. We illustrate this in Figure 5(a), with the manufacturer-

provided cycle degradation curve shown in blue [8] (which cuts off at 500 cycles), at

which point we draw on an exaggerated knee point in red.

Importantly, this curve is given for a single current: at 1 C, or 2.9 A 3, whereas we

wish to ideally describe how cycle ageing occurs at an arbitrary current. In order to

begin to do so, we first add artificial points onto the data given in Figure 5(a). We then

perform a simple fit to a function of the form

F(c) = c
�

α1 +α2 exp
�

α3(c −α4)
	�

, (17)

with all αi ≥ 0. We present the result of this fit in Figure 5(b).

(a) Analysis of manufacturer-provided cycle

degradation curve with artificial “knee” behaviour

shown in red.

(b) Fit of cycle degradation curve (Q0 − F(c)) with

actual and synthetic data points highlighted, with

F(c) as defined in (17).

Figure 5: Cycle degradation curves for a current of 2.9A.

We dub the function F(c) the current agnostic cycle degradation factor, which we

write as Fac ycle(c).

Seeking now to incorporate current dependence, we incorporate results from [12], in

which the authors analyse the current-dependant degradation of a 1.4 Ah Li-Ion battery

for current ranges between 1− 3 C, up to a maximum of 300 cycles. Within this paper,

the authors describe a fit of degradation of the form

Q(c)≈ β1(I)e
a(I)c + β2(I)e

b(I)c, (18)

3A current of n C corresponds to nQ0 A, with Q0 in Ah.



and we make the simplifying assumption in (18) that β1,β2 are constant (justified by

the observation that the variation they observe in β1,β2 is far smaller than the variations

in a, b).

We perform a simple fitting procedure to their data to generate a(I), b(I) for currents

in the range4 1 C ≤ I ≤ 3 C; with these we are able to generate an arbitrary capacity

degradation as a function of cycle count for currents lying within this range, when using

considering the cell in [12]. Subsequently, we generate several different degradations for

currents lying in the range 1 C ≤ I ≤ 3 C, and consider the values at 300 cycles (which,

given the nature of the degradation profiles, represent the “maximum” degradation we

observe within 300 cycles). Finally, we apply a fit to the degradations in the capacity

at 300 cycles at current n C; the justification for doing so is the assumption that while

actual current values in amperes that cause a certain amount of degradation might vary

significantly between batteries, the current in C should behave roughly similarly from

one battery to the next.

This final fit, of the form (with αi again non-negative)

F(I) = α5 − exp
�

α6I −α7

	

, (19)

we dub the current scaling factor Fcur rent(I). We further further constrain Fcur rent to lie

in the range 0≤ Fcur rent ≤ 1. Fcur rent , in essence, is a measure of how much further the

capacity should be decreased by for a given cycle degradation, dependant on the current

at which the battery was cycled. A value of Fcur rent = 1 would mean that our battery

was ran at I ≤ 1C , and lower values of Fcur rent correspond to higher values of current.

We present Fcur rent(I) in Figure 6.

Clearly, this analysis of Fcur rent(I) has taken several liberties in the generation of the

factor, but we claim that our results are indeed reasonable given that our combined

cycle degradation function,

(∆Q)c ycle := Fc ycle(I , c) =
Fac ycle(c)

Fcur rent(I)
(20)

blows up to infinity as we approach an operating current of ≈ 17 A as shown in Figure 6;

this is reasonably correct as the maximum allowable current for this cell as stated on the

data sheet to be 10 A. Further, we can see from Figure 6 that we incur heavy degradation

for current operation above 10 A, which is again in line with physical results to within a

few amperes, suggesting that our cycle degradation function is indeed reasonable.

4The behaviour for these variables is highly non-linear and as such for currents outside this range we

observe non-physical results with the fit we have.



Figure 6: Fcur rent(I) for all allowed values of current with the constraint that

0≤ Fcur rent ≤ 1.

Thus, we put together our expressions for cycle and calendar degradation to deter-

mine the final expression for capacity:

Q(t, c, s, I) =Q0 −
Fac ycle(c)

Fcur rent(I)
− Fcal(t, s)

=Q0 −
c
�

α1 +α2 exp
�

α3c −α4

	�

α5 − exp
�

α6I −α7

	

−
∫ t

0

d t

�

α8 cosh
�

α9s−α10

�

+α11 t
�

�sinh
�

α9s−α10

��

�

�

�

�

�

ds
d t

�

�

�

�

�

,

(21)

(22)

with αi ≥ 0 and the values given in Appendix B.

We also present our combined degradation effects in Figure 7 (assuming storage at

the same state of charge for all profiles as we have already discussed this effect in Figure

4). Note in particular how a longer storage duration incurs a downwards translation

of the degradation curve, and a higher current usage causes a steeper gradient in the

“linear” part of the degradation curve, and thus an earlier knee point.



Figure 7: Comparison of degradation profiles for different current usages and ages, all

at the same state of charge.

3 Formulation of Problem

Now that we have constructed a model for capacity, we can update EC M0 (equations 9

− 12) to no longer be constrained with a constant capacity, which we present as

EC M1























































Q(t, c, s, I) =Q0 −
Fac ycle(c)

Fcur rent(I)
− Fcal(t, s)

ṡ(t, c, s, I) = −
I(t)

Q(t, c, s, I)

V (s, t) = VOC (s)− R1(s)IR1
(s, t)− R0(s)I(t)

İR1
(s, t) =

I(t)
R1(s)C1(s)

−
IR1
(s, t)

R1(s)C1(s)

P(t) = I(t)V (s, t),

(23)

(24)

(25)

(26)

(27)

whilst keeping the expression for capacity in the condensed form (21) for clarity. This

system of equations is then capable of being solved numerically, such as via ode15s, a

variable order ODE solver in MATLAB [7].

The problem we seek to analyse is seeking an optimal driving routine for a simple

graph as presented in Figure 8, where a user spends the week at home but must traverse

115 km on the every weekend to get to another location (such as work), and then go back

home again after staying for two days. Further assuming that the electric car battery

cannot last the entire distance on a single charge, we insert two charging stations at

distances 20 km and 85 km from home. Lastly, we assume that upon every return home



we charge to 0.8 state of charge (a common threshold for electric vehicles [6]).

Home

Charger 1 Work

Charger 2

115 km

85 km
20 km

20 km
85 km

Figure 8: Pictorial representation of optimisation problem, with possible routes shown

in solid lines and total distance between work and home shown on the dotted line.

We thus define C1 as the distance travelled before stopping at a charging station, and

then C2 := 330− C1 as the distance left for the rest of the weekend trip to return home5.

We then define all the possible trips, and present them in Table 1. Note that Routes 1

and 4 charge at Charging Station 1, and Routes 2 and 3 stop at Charging Station 2 -

meaning that Route 1 and Route 4 have a long leg and a short leg, whilst Route 2 and

Route 3 have two “medium” legs of the journey.

Route: Route 1: Route 2: Route 3: Route 4:

C1: 20 km 85 km 145 km 210 km

C2: 210 km 145 km 85 km 20 km

Table 1: Outline of possible routes, with C1 being the distance travelled until charging

at a charging station, and C2 being the distance left until the user returns home.

4 Results

Defining state of health as the ratio Q(t,c,s,I)
Q0

, we build up to our final results by considering

each ageing effect in turn. First, we present the results of only considering cycle ageing

in Figure 9, where the routes with the long and short leg (Routes 1 and 4) clearly lead

to worse degradation over time.

We justify this result in Figure 10, which shows whilst driving (the only time when

we need to consider cycle ageing effects) the mean Voc(s) for the routes with a long and

short leg is lower. As V (s, t)∝ Voc(s), and V (s, t)∝ 1
I(t) , we see that Routes 1 and 4

actually lead to a higher current draw assuming a constant power output required for

5We make the implicit assumption that we only make one stop during the entire trip to charge, and

also note that we drive at a fixed velocity. Further assume we are at a fixed temperature of 10◦ celcius.



our vehicle. As a higher current implies a smaller value for Fcur rent(I), this then leads to

a greater degradation over time.

Figure 9: State of health as a function of only cycle ageing effects. Note that a visit is

defined as a round trip to work and back.

Figure 10: Mean state of charge while driving for Routes 2 and 4, with these state of

charge values highlighted on the Voc(s) curve generated from EC M1.

We next discuss the effect of solely incorporating calendar ageing, which we present

in Figure 11. Note how we see two different behaviours: at early times (a “new battery”)

the routes with the long and short leg perform worse, as when we considered only cycle

ageing effects. However, as we increase the number of visits (an “old battery”) the two

routes with the medium legs begin to perform worse, with the switch happening at

around 20 visits.

Then, examining the average state of charge over a visit (including time spent not

driving) for new batteries as shown in Figure 12, we see that the routes with two medium

legs have an average state of charge that is nearer to the optimal value of 0.4 - meaning

that these routes incur less degradation for new batteries.



Figure 11: Comparison of state of health against visits when only considering calendar

ageing.

Figure 12: Comparison of state of health against visits when only considering calendar

ageing for new batteries, with average state of charge highlighted for Routes 2 and 4.

We justify this behaviour via consideration of our calendar ageing function (equations

(14) and (15)). We note that by construction, the functions f (s) and g(s) reach their

minima at the optimal state of charge, but in general g(s) is constructed to attain a

minimum of 0 (meaning no further penalty incurred for storage at optimal state of

charge), while f (s) attains a minimum of 1 (the “base” degradation incurred when

operating at I ≤ 1 C). Thus, for “small” values of time t, we have

m1 f (s)> m2 g(s)t, (28)

which implies that the long-term storage effects are more important than the penalty

effects which are only active for the small periods when the vehicle is being driven

(recalling that the ∂Q
∂ s term is only active when the state of charge is changing).

Considering now old batteries, we note that eventually as t →∞ the inequality sign

in (28) flips provided s ̸= 0.4 - and so our penalty function is weighted higher when



considering degradation effects, that is to say we enter a situation in which

m1 f (s)< m2 g(s)t, (29)

which is to say how we use an older battery is more important than how we store it.

Bearing in mind that this penalty function is only in consideration when we drive and

recalling the average state of charge values for driving profiles as shown in Figure 10, we

observe that in fact the Routes 1 and 4 are better for using older batteries as they have

an average state of charge much closer to the optimal value for ageing when driving -

explaining why at late times Routes 2 and 3 incur greater battery degradation.

We thus present the total degradation over time in Figure 13 which demonstrates

the results which we should now expect for usage recommendations, namely that:

1. For new batteries, storage at an optimal state of charge and usage near the optimal

state of charge are both important concerns for minimising degradation.

2. For old batteries, penalty effects dominate and so any usage of the battery should

be done as near to the optimal state of charge as possible, and storage effects are

largely irrelevant.

Figure 13: Comparison of state of health against visits with both cycle and calendar

degradation.



5 Conclusions

Using a simple equivalent circuit model fitted to data on a specific battery, alongside a

model for capacity degradation constructed using both information directly related to our

battery and also batteries of similar chemistries, we have been able to construct a model

to describe the evolution of the battery over time given some input usage profile. Further,

we have explored this model in the context of a toy scenario pertaining to seeking the

optimal usage profiles for an electric vehicle undergoing a weekly long-distance journey,

and have explored how the differing effects within our model come into play within this

scenario.

We have demonstrated that we may split the lifetime of a battery into two broad

regimes, either “new” or “old”, and have shown that both these regimes have different

ideal usage profiles. Namely, storage effects are important for new batteries and so

consideration of how batteries are kept long-term is of value, whereas for older batteries

storage effects are dwarfed by the degradation effects incurred by usage of the battery

at suboptimal states of charge.

However, there are some clear limitations of our model. Firstly, we have neglected

any temperature based effects both in our ECM parameters and in the degradation model,

when we know from observation of both the data sheet and HPPC curves that these

effects do exist; the decision was made to exclude these effects in our analysis as some

parameters (such as C1 in the ECM) vary wildly with temperature and so in effect we

would need to construct different models for different temperature ranges. Furthermore,

as a result of not having exact data on how cycle degradation varies with current for our

battery nor for how the shape of the optimal state of charge curves g(s), f (s) look in

our calendar ageing functions, we have been forced to make assumptions on how the

capacity evolves over time - leading to us only to be able to give qualitative results for

new and old batteries.

Some clear extensions for this project are thus to perform experimentation to observe

how capacity degrades for different currents as a function of cycle count, and also

to incorporate these temperature-based effects. With these tools in place, it should

be straightforward to implement a more quantitative model as to be able to make

recommendations for usage profiles for this battery, and indeed other batteries of similar

chemistries.
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Appendices

A Polynomial Fits for ECM Parameters

R0(s) = 0.99s6 − 2.26s5 + 1.93s4 − 0.93s3 + 0.52s2 − 0.52s− 0.25,

R1(s) = 24.94s6 − 89.93s5 + 130.05s4 − 96.3s3 + 38.45s2 − 7.8s+ 0.65,

C1(s) = −839.66× 103s4 + 2.12× 106s3 − 2.06× 106s2 + 906.76× 103s− 101× 103,

VOC(s) = 10.60s5 − 33.52s4 + 40.17s3 − 22.18s2 + 6.28s+ 2.81

B Capacity Degradation Function

Q(t, c, s, I) =Q0 −
c
�

1.32× 10−3 + 2.9exp
�

5.07× 10−2c − 35.49
	�

1.02− exp{0.30I − 5.07}

−
∫ t

0

d t

�

9.20× 10−10 cosh(0.4s− 0.16) + 3.67× 10−10 t|sinh(0.4s− 0.16)|
�

�

�

�

ds
d t
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